【ARC136E】Non-coprime DAG(分类讨论)

Non-coprime DAG

题目链接:ARC136E

题目大意

有一个 n 个点的有向图,i 有连向 j 的边当且仅当 i<j 而且 gcd(i,j)>1。
然后给你每个点的点权,你要选一些点,使得任意两个点之间再原路都没有一个点能到另一个点,要你最大化选的点权和。

思路

考虑如何看两个点之间有没有路径。

考虑用 2 2 2 进行中转,毕竟是最小的质数。
所以对是否被 2 2 2 整除分类讨论:(假设看 x x x 是否能到 y y y x < y x<y x<y

f ( x ) f(x) f(x) x x x 的最小质数。
2 ∣ x , 2 ∣ y 2|x,2|y 2∣x,2∣y:都有 2 2 2 公因子,直接连边。
2 ∤ x , 2 ∣ y 2\nmid x,2|y 2x,2∣y:考虑把 x x x 变成二的倍数,那用它最小的质数变,其实就是加上它,所以是 x → x + f ( x ) → y x\rightarrow x+f(x)\rightarrow y xx+f(x)y
那条件就是 x + f ( x ) ⩽ y x+f(x)\leqslant y x+f(x)y
2 ∣ x , 2 ∤ y 2|x,2\nmid y 2∣x,2y:相同的想法,先变到 y y y 小一点的二倍数,再变到 y y y x → y − f ( y ) → y x\rightarrow y-f(y)\rightarrow y xyf(y)y
那条件就是 x ⩽ y − f ( y ) x\leqslant y-f(y) xyf(y)
2 ∤ x , 2 ∤ y 2\nmid x,2\nmid y 2x,2y:一个直观的想法是 x + f ( x ) ⩽ y − f ( y ) x+f(x)\leqslant y-f(y) x+f(x)yf(y),考虑证明。

充分性是有的,我们看看必要性,即看看会不会存在不满足这个条件但是连边的情况。
那不满足条件就是 y − f ( y ) ⩽ x + f ( x ) y-f(y)\leqslant x+f(x) yf(y)x+f(x),那从 x < y x<y x<y 就可以列出:
x ⩽ y − f ( y ) ⩽ x + f ( x ) ⩽ y x\leqslant y-f(y)\leqslant x+f(x)\leqslant y xyf(y)x+f(x)y
(两边的两个小于等于其实是显然的,就从第二第三种情况可以得到)

x + f ( x ) x+f(x) x+f(x) 一定到不了 y y y,所以只能是 x x x 直接到 y y y,设公共部分是 d d d,表示成 x = a d , y = b d x=ad,y=bd x=ad,y=bd
而且因为 2 ∤ x , 2 ∤ y 2\nmid x,2\nmid y 2x,2y,会有 2 ∤ a , 2 ∤ b 2\nmid a,2\nmid b 2a,2b,然后 x = a d < ( a + 1 ) d < b d = y x=ad<(a+1)d<bd=y x=ad<(a+1)d<bd=y,啊就矛盾了(就算 b = a + 2 b=a+2 b=a+2 也满足上面那个)

所以是对的,那考虑讨论完有什么用。
发现不满足的条件是一个一边闭合一遍开的区间。
但这只是对于它是小的那个或者大的那个。
那如果对于所有的情况,它就是一个闭区间!

观察一下不难看出,对于偶数,就是 [ x , x ] [x,x] [x,x],对于奇数,就是 [ x − f ( x ) + 1 , x + f ( x ) − 1 ] [x-f(x)+1,x+f(x)-1] [xf(x)+1,x+f(x)1]

所以你就是区间求交就代表不能到达。
然后你就区间求交求贡献,差分一下贡献单个加再前缀和加过去就可以。

代码

#include<cstdio>
#include<iostream>
#define ll long long

using namespace std;

const int N = 1e6 + 100;
int n, a[N], prime[N], np[N];
ll f[N];

int main() {
	for (int i = 2; i < N; i++) {
		if (!np[i]) np[i] = i, prime[++prime[0]] = i;
		for (int j = 1; j <= prime[0] && i * prime[j] < N; j++) {
			np[i * prime[j]] = prime[j]; if (i % prime[j] == 0) break;
		}
	}
	
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
	f[1] += a[1];
	for (int i = 2; i <= n; i++) {
		if (i & 1) f[i - np[i] + 1] += a[i], f[i + np[i]] -= a[i];
			else f[i] += a[i], f[i + 1] -= a[i];
	}
	
	ll ans = 0;
	for (int i = 1; i <= n; i++)
		f[i] += f[i - 1], ans = max(ans, f[i]);
	printf("%lld", ans);
	
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值