分治算法解决最近对问题

该博客介绍了如何运用分治算法解决平面中的最近点对问题。首先,通过将点按x轴坐标升序排列并画垂直线将其分为两部分,然后递归地求解两侧子集的最近对。接着,检查垂直带内是否存在更小距离的点对。最后,分析算法的时间复杂度为O(nlogn)。
摘要由CSDN通过智能技术生成

1、问题

设P1(x1, y1),P2(x2, y2),P3(x3, y3), P4(x4, y4) …,是平面上n个散列点构成的集合S,最近对问题就是找出集合S中距离最近的点对。

2、解析

设P1,P2,P3,…,Pn是平面上n个点构成的集合S,解决问题之前,假定这些点都是按照它们的x轴坐标升序排列的。我们可以画一条垂直线x=c,将这些点分为两个包含n/2个点的子集S1、S2,分别位于直线x=c的两侧。
遵循分治的思想,分别递归的求出S1、S2的最近对,比如d1、d2,并设d=min{d1,d2}。此时d并不是所有点对的最小距离,离分界线x=c为d的两侧仍可能存在更小距离的点对,因此我们还需在以x=c对称、宽度为2d的垂直带中检查是否存在这样的点对。设C1、C2分别是该垂直带位于直线x=c两侧的点集,对于C1中的每个点P(x0,y0),我们都需要检查C2中的点是否小于d。显然,这种点坐标y应在区间(y-d,y+d)内。

3、设计

double merge(int left, int right) 
{
    double d = INF;
    if (left == right)
        return d;
    if (left + 1 == right)
        return dist(left, right);
    int mid = left + right >> 1;
    double d1 = merge(left, mid);
    double d2 = merge(mid + 1, right);
    d = min(d1, d2);
    int i, j, k = 0;
    for (i = left; i <= right; i++)
        if (fabs(S[mid].x - S[i].x) < d) 
            temp[k++] = i;
    sort(temp, temp + k, cmps);
    for (i = 0; i < k; i++)
        for (j = i + 1; j < k && S[temp[j]].y - S[temp[i]].y < d; j++) 
        {
            double d3 = dist(temp[i], temp[j]);
            if (d > d3)
                d = d3;
        }
    return d;
}

4、分析

时间复杂度为O(nlogn)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值