设计和实现聪明的尼姆实验

设计和实现聪明的尼姆实验

from random import randint,choice
def everysetp(n):
    half = n / 2
    num = 1
    lst = []
    while True:
        i = 2 ** num - 1
        if i >= n:
            break
        if i >= half:
            lst.append(n - i)
        num += 1
    if lst:
        return choice(lst)
    else:
        return randint(1,int(half))


def game(n):
    while n > 1:
        print("轮到你的回合,还剩%d的物品" % n)
        while True:
            try:
                num_y = int(input("你要拿走的数量"))
                assert 1 <= num_y <= n // 2
                break
            except:
                print("请输入1到%d之间数量的物品" % n//2)
        n -= num_y
        if n == 1:
            print("你赢了")
        n -= everysetp(n)
    else:
        return print("你输了")


game(100)
尼姆游戏是一种非常经典的数学游戏,通常由两个玩家轮流取走一些石子,每次取走的石子数量可以自由选择,但是必须在同一个堆中取走至少一个石子。最后无法取走石子的玩家输掉游戏。 而对于聪明尼姆游戏程序设计,其实就是让电脑在尽可能少的步骤内获胜。这可以通过一些数学方法来实现,比如二进制异或运算。 具体来说,假设有n个堆,每个堆的石子数分别为a1, a2, ..., an。我们可以把这n个数都写成二进制形式,然后按位进行异或运算。也就是说,我们把所有数的每一位都相加起来,如果某一位上的和为奇数,那么电脑就应该在该位上取走一个石子。 这样做的原理是,异或运算具有“同0异1”的特性。也就是说,如果两个数在某一位上相同,那么异或运算的结果就是0;否则结果就是1。因此,如果我们让所有堆中对应位上的和都为偶数,那么电脑就一定可以在尽可能少的步骤内获胜。 以下是一个简单的聪明尼姆游戏程序的Python实现: ```python def nim_game(piles): x = 0 for pile in piles: x ^= pile if x == 0: # 如果异或和为0,则电脑无法获胜 return False for i in range(len(piles)): # 如果某一堆石子数的异或和与总异或和相同,则在该堆中取走一些石子 if piles[i] ^ x < piles[i]: piles[i] ^= x return True # 如果找不到合适的堆,则在第一堆中取走一些石子 piles ^= x return True ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值