代码随想录-57-106. 从中序与后序遍历序列构造二叉树

前言

在本科毕设结束后,我开始刷卡哥的“代码随想录”,每天一节。自己的总结笔记均会放在“算法刷题-代码随想录”该专栏下。
代码随想录此题链接

题目

给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
在这里插入图片描述
在这里插入图片描述

1.递归(区间,左闭右开)

此题可以使用递归遍历(前序),通过后序最后一个元素找到中序的位置,这就是根节点。
然后递归遍历当前根节点的左右孩子。

变量

需要设置一个类变量(对于这个类中所有的函数来说是全局变量)。

HashMap<Integer,Integer> inorderMap = new HashMap();

2. 本题思路分析:

此题可以使用递归遍历,
三部曲:

  • 第一步确定参数和返回值
    参数:中序数组,中序数组的开始下标,中序数组的结束下表,后序数组,后序数组的开始下标,后序数组的结束下表;
    返回值:根节点
  • 第二步截止递归的条件
    因为是左闭右开,开始下标大于等于结束下标就意味着这个区间大小为0 了,返回null。
  • 第三步单层递归逻辑
    通过后序的最后一个元素(当前的根节点),找到中序元素根节点的下标,根据当前中序数组的根节点下标和当前中序数组的开始下标算出当前左子树的长度,这个长度也就是左子树对应的后序数组长度;
    然后递归调用函数,返回值分别就是当前根节点的左子树和右子树。

3. 算法实现

HashMap<Integer,Integer> inorderMap = new HashMap();
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        for(int i = 0;i < inorder.length;i++){
            inorderMap.put(inorder[i],i);
        }
        TreeNode result = traversal(inorder,0,inorder.length,postorder,0,postorder.length);
        return result;
    }

    public TreeNode traversal(int[] inorder,int inBegin,int inEnd,int[] postorder,int postBegin,int postEnd){
        //左闭右开
        if(inEnd <= inBegin || postEnd <= postBegin){
            return null;
        }
        //1.找到后序的最后一个元素作为中序的切割点
        int rootIndex = inorderMap.get(postorder[postEnd - 1]);
        //2.
        TreeNode cur = new TreeNode(inorder[rootIndex]);
        //左右子树后序切割
        int lenOfLeft = rootIndex - inBegin;
        TreeNode leftTreeNode = traversal(inorder,inBegin,rootIndex,postorder,postBegin,postBegin + lenOfLeft);
        TreeNode rightTreeNode = traversal(inorder,rootIndex + 1,inEnd,postorder,postBegin + lenOfLeft,postEnd - 1);
        cur.left = leftTreeNode;
        cur.right = rightTreeNode;
        return cur;
    }

4. 算法复杂度

暂无

5. 算法坑点

暂无

树的存储与遍历: 1.初始化二叉树 ```c++ #include <iostream> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; TreeNode* createTree() { int val; cin >> val; if (val == -1) { return NULL; } TreeNode* root = new TreeNode(val); root->left = createTree(); root->right = createTree(); return root; } ``` 2.先序遍历二叉树 ```c++ void preOrder(TreeNode* root) { if (root == NULL) { return; } cout << root->val << " "; preOrder(root->left); preOrder(root->right); } ``` 3.中序遍历二叉树 ```c++ void inOrder(TreeNode* root) { if (root == NULL) { return; } inOrder(root->left); cout << root->val << " "; inOrder(root->right); } ``` 4.后序遍历二叉树 ```c++ void postOrder(TreeNode* root) { if (root == NULL) { return; } postOrder(root->left); postOrder(root->right); cout << root->val << " "; } ``` 5.销毁二叉树 ```c++ void destroyTree(TreeNode* root) { if (root == NULL) { return; } destroyTree(root->left); destroyTree(root->right); delete root; } ``` 二叉树的复原: 1.由前序、中序序列确定复原二叉树 ```c++ TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty() || inorder.empty()) { return NULL; } int rootVal = preorder[0]; TreeNode* root = new TreeNode(rootVal); vector<int>::iterator it = find(inorder.begin(), inorder.end(), rootVal); int leftSize = it - inorder.begin(); vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + 1 + leftSize); vector<int> leftInorder(inorder.begin(), it); vector<int> rightPreorder(preorder.begin() + 1 + leftSize, preorder.end()); vector<int> rightInorder(it + 1, inorder.end()); root->left = buildTree(leftPreorder, leftInorder); root->right = buildTree(rightPreorder, rightInorder); return root; } ``` 2.由中序、后序序列确定复原二叉树 ```c++ TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) { if (inorder.empty() || postorder.empty()) { return NULL; } int rootVal = postorder.back(); TreeNode* root = new TreeNode(rootVal); vector<int>::iterator it = find(inorder.begin(), inorder.end(), rootVal); int leftSize = it - inorder.begin(); vector<int> leftInorder(inorder.begin(), it); vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftSize); vector<int> rightInorder(it + 1, inorder.end()); vector<int> rightPostorder(postorder.begin() + leftSize, postorder.end() - 1); root->left = buildTree(leftInorder, leftPostorder); root->right = buildTree(rightInorder, rightPostorder); return root; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值