【win10】insightface环境搭建

前言

我这两个是独立的教程,具有全部步骤,如果执行gpu推理,就不用再看cpu推理的过程。

cpu推理

准备

# 新建虚拟环境
conda create face_detect python==3.12
# 激活
conda activate face_detect
# 下载opencv扩展库,包括核心库了,不用再下载opencv-python
pip install opencv-contrib-python
pip install onnxruntime

安装

pip install  insightface

测试

运行代码即可

import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image



app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)

GPU推理

下载cuda toolkit

https://developer.nvidia.com/cuda-downloads
在这里插入图片描述

下载好运行,exe,根据提示,一路下一步,
会自动更新驱动的。
默认安装路径
D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6

下载cudnn

https://developer.nvidia.com/cudnn-downloads

同样 ,下载好一路下一步,记得你安装在哪里了
默认路径
C:\Program Files\NVIDIA\CUDNN\v9.5
将cudnn下三个文件夹中的文件复制,粘贴到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6 路径下的bin,include,lib文件夹中。
在这里插入图片描述

配置python

# 新建虚拟环境
conda create face_detect python==3.12
# 激活
conda activate face_detect
# 下载opencv扩展库,包括核心库了,不用再下载opencv-python
pip install opencv-python-contrib
pip install onnxruntime onnxruntime-gpu insightface

测试

运行代码即可

import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image



app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)
### 安装 InsightFace 库于 Stable Diffusion 环境 为了在 Stable Diffusion 环境中成功安装 InsightFace 库,需遵循特定步骤来确保兼容性和功能正常运作。 #### 创建并激活 Conda 虚拟环境 首先创建一个新的 Conda 环境用于隔离依赖关系,这有助于避免不同库版本间的冲突。通过命令 `conda create --name sd_env python=3.8` 来建立名为 `sd_env` 的新环境,并指定 Python 版本为 3.8[^1]。接着利用 `conda activate sd_env` 命令激活此环境。 #### 获取并设置 Stable Diffusion WebUI 随后克隆官方 GitHub 上的 Stable Diffusion WebUI 项目到本地机器上,执行如下 Git 命令实现:`git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`[^3]。进入刚下载下来的仓库目录内准备进一步操作。 #### 安装 InsightFace 及其依赖项 针对 InsightFace 的具体需求,在已有的虚拟环境中运行以下 Pip 指令完成必要的软件包安装: ```bash pip install insightface==0.7.3 pip install --upgrade protobuf ``` 上述指令会自动处理 InsightFace 和 Protobuf 的安装及其所需的所有依赖组件[^2]。 #### 配置 ReActor 模型 对于希望应用 ReActor 进行人脸交换的情况,则还需要额外获取对应的预训练模型文件并将它们放置至适当位置以便程序调用。按照指引访问提供的链接下载资源后解压,最终把得到的 `.onnx` 文件复制粘贴进 `{stable_diffusion_webui_root}/models/insightface` 目录下即可[^4]。 至此便完成了整个过程,现在可以在基于 Conda 构建出来的 Stable Diffusion 平台上顺利运用 InsightFace 实现更多创意性的图像编辑任务了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值