前言
我这两个是独立的教程,具有全部步骤,如果执行gpu推理,就不用再看cpu推理的过程。
cpu推理
准备
# 新建虚拟环境
conda create face_detect python==3.12
# 激活
conda activate face_detect
# 下载opencv扩展库,包括核心库了,不用再下载opencv-python
pip install opencv-contrib-python
pip install onnxruntime
安装
pip install insightface
测试
运行代码即可
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)
GPU推理
下载cuda toolkit
https://developer.nvidia.com/cuda-downloads
下载好运行,exe,根据提示,一路下一步,
会自动更新驱动的。
默认安装路径
D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6
下载cudnn
https://developer.nvidia.com/cudnn-downloads
同样 ,下载好一路下一步,记得你安装在哪里了
默认路径
C:\Program Files\NVIDIA\CUDNN\v9.5
将cudnn下三个文件夹中的文件复制,粘贴到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6
路径下的bin,include,lib文件夹中。
配置python
# 新建虚拟环境
conda create face_detect python==3.12
# 激活
conda activate face_detect
# 下载opencv扩展库,包括核心库了,不用再下载opencv-python
pip install opencv-python-contrib
pip install onnxruntime onnxruntime-gpu insightface
测试
运行代码即可
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
img = ins_get_image('t1')
faces = app.get(img)
rimg = app.draw_on(img, faces)
cv2.imwrite("./t1_output.jpg", rimg)