leetcode Day23----array.easy

博客围绕最小花费爬楼梯问题展开,给定每级楼梯的非负花费,可选择爬一级或两级,需找出到达楼顶的最小花费,可从第0或1级开始。文中给出示例及注意事项,还分享经验教训,最后展示了该问题的C语言和Python3实现的运行情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Min Cost Climbing Stairs

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:
cost will have a length in the range [2, 1000].
Every cost[i] will be an integer in the range [0, 999].

在这里插入图片描述
经验教训:考虑不周,局部最小不等于总体最小。
总结:像这些求和(最小/最大)都可以改变原数组,让数字某一位数变成积累的数。

C语言

int minCostClimbingStairs(int* cost, int costSize){
    int i=2;
    while(i<costSize)
    {cost[i]=(cost[i-1]<cost[i-2])?cost[i-1]+cost[i]:cost[i-2]+cost[i];++i;}
    if(cost[costSize-1]<cost[costSize-2]){return cost[costSize-1];}
    return cost[costSize-2];
}

Success
Details
Runtime: 8 ms, faster than 51.97% of C online submissions for Min Cost Climbing Stairs.
Memory Usage: 6.8 MB, less than 100.00% of C online submissions for Min Cost Climbing Stairs.

python3

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        for i in range(2,len(cost)):
            cost[i]=min(cost[i-1],cost[i-2])+cost[i]
        return min(cost[-1],cost[-2])
        

Success
Details
Runtime: 44 ms, faster than 89.57% of Python3 online submissions for Min Cost Climbing Stairs.
Memory Usage: 13.3 MB, less than 7.01% of Python3 online submissions for Min Cost Climbing Stairs.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值