Min Cost Climbing Stairs
On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).
Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.
Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:
cost will have a length in the range [2, 1000].
Every cost[i] will be an integer in the range [0, 999].
经验教训:考虑不周,局部最小不等于总体最小。
总结:像这些求和(最小/最大)都可以改变原数组,让数字某一位数变成积累的数。
C语言
int minCostClimbingStairs(int* cost, int costSize){
int i=2;
while(i<costSize)
{cost[i]=(cost[i-1]<cost[i-2])?cost[i-1]+cost[i]:cost[i-2]+cost[i];++i;}
if(cost[costSize-1]<cost[costSize-2]){return cost[costSize-1];}
return cost[costSize-2];
}
Success
Details
Runtime: 8 ms, faster than 51.97% of C online submissions for Min Cost Climbing Stairs.
Memory Usage: 6.8 MB, less than 100.00% of C online submissions for Min Cost Climbing Stairs.
python3
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
for i in range(2,len(cost)):
cost[i]=min(cost[i-1],cost[i-2])+cost[i]
return min(cost[-1],cost[-2])
Success
Details
Runtime: 44 ms, faster than 89.57% of Python3 online submissions for Min Cost Climbing Stairs.
Memory Usage: 13.3 MB, less than 7.01% of Python3 online submissions for Min Cost Climbing Stairs.