[SparkSQL] Rdd转化DataFrame 通过StructType为字段添加Schema

1、开发环境

spark-2.1.0-bin-hadoop2.6

2、Rdd转换成DataFrame,为字段添加列信息

参数 nullable 说明:Indicates if values of this field can be null values

val schema = StructType(List(
  StructField("name", StringType, nullable = false),
  StructField("age", IntegerType, nullable = true),
  StructField("money", DoubleType, nullable = true),
  StructField("hobbies", DataTypes.createArrayType(StringType), nullable = true)
)
)

val flatMapDF = sparkSession.createDataFrame(flatMapRdd, schema)

3、特别注意

Array类型数据,需要通过 DataTypes.createArrayType(StringType) 生成相应 DateType类型数据,而不能使用ArrayType。否则会产生如下报错:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值