摩斯顺利通过BCTC联邦学习测评
近日,摩斯通过国家金融科技测评中心(BCTC)联邦学习金融应用测评,成为行业内为数不多通过该项测评的厂商之一。摩斯也因此成为“BCTC多方安全计算+联邦学习”双重认证的厂商。
本次测评由国家金融科技中心银行卡检测中心进行,遵循了测评依据《联邦学习金融应用技术要求》。测评分别从联邦学习金融与应用功能、安全和性能三部分进行。涉及数据输入、算法管理、数据安全与隐私、横向(纵向)联邦学习安全、认证授权等共计76个测评项。
多方联合建模,安全与性能双赢
摩斯隐私计算平台是市面上极少数深度融合了各种隐私计算技术的产品。可以在用户体验一致情况下,提供多方安全计算、联邦学习、可信执行环境3种路线的联合建模能力,可以根据具体场景需求在功能丰富度、性能、安全性间做最佳权衡。
01 功能方面
-
摩斯在保证数据隐私的同时,能实现多方联合建模、联合预测与联合决策等功能,满足金融业务复杂场景的应用需求。功能方面摩斯在之前已通过信通院联邦学习等多项功能测评。
-
除此之外,摩斯还提供多种形态产品和服务能力。目前摩斯已经发展出MORSE Edge(隐私计算软件产品,支持分布式、集中式)、MORSE Flow(隐私计算连接器,互联互通标准化解决方案)、MORSE Station(隐私计算一体机,密码卡、TEE卡、GPU加速),支持各种类型客户和场景的需求。同时提供MORSE OPEN系列服务,安全数据服务MorseDaaS、安全模型服务Morse MaaS、机密算力服务Morse CaaS、隐私计算APIMorse OpenAPI。
02 安全方面
-
摩斯满足数据安全与隐私,横向联邦学习安全、纵向联邦学习安全、认证授权等BCTC联邦学习8项要求。摩斯不依赖可信中心方,提供抗共谋攻击的方案,并采用零知识证明等技术手段达到恶意安全模型。此外,摩斯融合了差分隐私、脱敏、匿名化等隐私保护技术,全方面保障数据隐私。
-
除了隐私计算外,摩斯还从系统安全、通信安全等方面保障数据隐私。摩斯通用产品和一体机分别集成了蚂蚁自研的国密认证的软密模块和密码卡,摩斯一体机还采用了基于TPM的可信度量、安全容器等技术,从硬件、系统等层面增强安全性。
-
在此之前,摩斯已通过信通院联邦学习安全专项测评最高安全等级。
03 性能方面
-
摩斯结合大数据框架,支持超大数据集和高可用。摩斯将隐私计算技术与SPARK大数据计算框架和redis、ODPS等大数据存储框架,实现了灵活的横向扩展和高可用,支持10亿级别数据的隐私计算稳定运行。
-
软硬件结合优化性能、增强安全。通过自研隐私计算加速卡和算法、软件联合优化,实现百倍性能加速。采用国密认证的密码卡增强隐私计算中的通信安全和密钥安全。采用可信硬件和可信OS技术增强隐私计算平台可信度。
-
摩斯也是为数不多的通过信通院联邦学习大规模性能测评的厂商。
联邦学习应用场景广阔
联邦学习在金融行业应用广泛,如联合风控、联合营销等场景。联合风控场景,可帮助金融机构之间提供风控数据分析、模型训练和风险决策,实现风控模型精细化和个性化,提升风险识别能力。摩斯与华瑞银行进行的反欺诈合作,上线仅一个月就帮助数百名用户挽回损失。联合营销场景,主要是基于隐私计算连接多方数据,进行精准的用户洞察,用于精准营销提升营销效果,目前摩斯在该场景已服务上百家银行等金融机构。
本次摩斯通过金融行业权威检测机构国金BCTC的测试,体现了摩斯在金融行业的产品技术领先性,摩斯专注于隐私计算助力行业数智化发展,被IDC评为“2022年中国隐私计算平台市场份额第一”。