Project Euler Problem 72 (C++和Python代码实现和解析)

100 篇文章 3 订阅
87 篇文章 1 订阅

Problem 72 : Counting fractions

Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 21 elements in this set.

How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?

1. 欧拉项目第72道题 : 计数分数

考虑分数n/d,分子n 和 分母d 是正整数。 如果 n<d且n和d互质(n和d的最大公约数是1),分数n/d被叫做最简真分数。

如果我们按大小的升序列出d≤8的最简真分数集合,则得到
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出,这个集合包括21项(元素)。

当d≤1,000,000时,最简真分数的集合包括多少项呢?

2. 求解分析

第一种方法

欧拉函数φ(n) (有时称为Phi函数), 用于确定小于n且与n互质的数的个数。例如:小于9 且与9互质的数有1, 2, 4, 5, 7, 和 8, 所以 φ(9)=6。

数n小于n且与n互质的数φ(n)n/φ(n)
2112
31,221.5
41,322
51,2,3,441.25
61,523
71,2,3,4,5,661.1666…
81 ,3,5,742
91,2,4,5,7,861.5
101,3,7,942.5

如何求解φ(x) 呢?
通式: 在这里插入图片描述
其中p1, p2……pn为x的所有质因数,x是不为0的整数。
φ(1)=1(和1互质的数(小于等于1)就是1本身)。

我们需要找出x的所有质因数,然后计算出φ(x),最后d从2到max_d逐个把φ(d)累加求和,结果就是最简真分数的集合的包含的项数。

第二种方法

其实我们可以借鉴质数筛子的方法,用类似的方法来实现。

3. C++ 代码实现

函数 calculatePhi(int x) 用来计算x的phi。我们先找到x的所有的质因数,然后用欧拉函数公式计算出phi值。因为每个数的质因数的个数不多,但为了避免频繁申请和释放内存,所以我们把原先使用的vector/set改成使用数组,这样做的效果确实很明显。

函数countAllReducedProperFractions(int max_d = m_max_n) 用来把d从2到max_d的phi(d)累加求和。

C++代码

#include <iostream>
#include <cmath>
#include <cassert>
#include <ctime>

using namespace std;

class PE0072
{
private:
    static const int m_max_n = 1000000; // one million

    static const int m_max_primeFactors = 15; 

    int m_primesFactors_array[m_max_primeFactors];
    int m_numOfFactors;

    int calculatePhi(int x);

public:
    long long countAllReducedProperFractions(int max_d);
};

int PE0072::calculatePhi(int x)
{
    double phi = x;

    m_numOfFactors = 0;

    for (int i = 2; i*i <= x; i++)
    {
        if (x % i == 0)
        {
            m_primesFactors_array[m_numOfFactors++] = i;
            while (x % i == 0)
            {
                x /= i;
            }
        }
    }

    if (x != 1)
    {
        m_primesFactors_array[m_numOfFactors++] = x;
    }

    double p;

    for (int i = 0; i < m_numOfFactors; i++)
    {
        p    = m_primesFactors_array[i];
        phi *= (p - 1)/p; 
    }
    
    return (int)phi;
}

long long PE0072::countAllReducedProperFractions(int max_d = m_max_n)
{
    long long sum = 0;  // φ(1) = 1, so d=1 has no reduced proper fraction

    for (int d=2; d<=max_d; d++)
    {
        sum += calculatePhi(d);
    }
    return sum;
}

int main()
{
    clock_t start=clock();

    PE0072 pe0072;

    assert(21 == pe0072.countAllReducedProperFractions(8));

    long long sum = pe0072.countAllReducedProperFractions();

    cout << "For n <= 1,000,000, "  << sum << " elements would "; 
    cout << "be contained in the set of reduced proper fractions" << endl;

    clock_t finish = clock();
    double duration=(double)(finish - start) / CLOCKS_PER_SEC;
    cout << "C/C++ running time: " << duration << " seconds" << endl;

    return 0;
}

C++代码 II (利用跟质数筛子类似的方法实现)

#include <iostream>
#include <vector>
#include <cassert>
#include <ctime>

using namespace std;

class PE0072
{
private:
    static const int m_max_n = 1000000; // one million

public:
    long long countReducedProperFractions(int max_d);
};

long long PE0072::countReducedProperFractions(int max_d = m_max_n)
{
    vector<int> phi_vec(max_d+1);

    for(int d=0; d<=max_d; d++)
    {
        phi_vec[d] = d;
    }

    for(int d=2; d<=max_d; d++)
    {
        if (d == phi_vec[d])
        {
            for (int k=d; k<=max_d; k+=d)
            {
                phi_vec[k] -= phi_vec[k] / d;
            }
        }
    }

    long long sum = 0;  // φ(1) = 1, so d=1 has no reduced proper fraction
    for (int d=2; d<=max_d; d++)
    {
        sum += phi_vec[d];
    }

    return sum;
}

int main()
{
    clock_t start = clock();

    PE0072 pe0072;

    assert(21 == pe0072.countReducedProperFractions(8));

    long long sum = pe0072.countReducedProperFractions();

    cout << "For n <= 1,000,000, "  << sum << " elements would "; 
    cout << "be contained in the set of reduced proper fractions" << endl;

    clock_t finish = clock();
    double duration=(double)(finish - start) / CLOCKS_PER_SEC;
    cout << "C/C++ running time: " << duration << " seconds" << endl;

    return 0;
}

4. Python 代码实现

Python采用跟C++一样的方法来实现。方法二的运行时间比方法一的运行时间明显少。

Python代码

class PE0072(object):
    def __init__(self):
        self.m_primeFactors_list = [ 0 ]*15  # max 15 prime factors

    def calculatePhi(self, x):
        """ calculate phi = x*phi*(1-1/p) for p in m_primeFactors_list"""
        phi, numOfFactors = x, 0
    
        for i in range(2, int(x**0.5)+1):
            if 0 == x % i:
                self.m_primeFactors_list[numOfFactors] = i
                numOfFactors += 1
                while 0 == x % i:
                    x //= i
        
        if x != 1:
            self.m_primeFactors_list[numOfFactors] = x
            numOfFactors += 1

        for p in self.m_primeFactors_list[:numOfFactors]:
            phi *= (p-1)/p
   
        return phi

    def countReducedProperFractions(self, max_d):
        total = 0 # d=1, φ(1)=1, has no reduced proper fraction

        for d in range(2, max_d+1):
            total += self.calculatePhi(d)
        return total

def main():
    pe0072 = PE0072()

    assert 21 == pe0072.countReducedProperFractions(8)

    total = pe0072.countReducedProperFractions(10**6)

    print("For n <= 1,000,000, %d elements would" % total, end=' ')
    print("be contained in the set of reduced proper fractions.")
    
if  __name__ == '__main__':
    main()

Python代码 II (利用跟质数筛子类似的方法实现)

import time
    
def countReducedProperFractions(max_d):
    phi_list = [ n for n in range(max_d+1) ]

    for n in range(2, max_d+1):
        if phi_list[n] == n:
            for k in range(n, max_d+1, n):
                phi_list[k] -= phi_list[k] // n

    return sum(phi_list[2:])  # d >= 2

def main():
    start = time.process_time()

    assert 21 == countReducedProperFractions(8)

    total = countReducedProperFractions(10**6)

    print("For n <= 1,000,000, %d elements would" % total, end=' ')
    print("be contained in the set of reduced proper fractions.")

    end = time.process_time()

    print('PE0072 spent CPU processing time :', end-start)

if  __name__ == '__main__':
    main()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值