计算抛物线与直线之间的面积,需要先了解抛物线和直线的方程,然后通过积分来计算它们之间的面积。假设抛物线的方程为
y
=
a
x
2
+
b
x
+
c
y = ax^2 + bx + c
y=ax2+bx+c,直线的方程为
y
=
m
x
+
n
y = mx + n
y=mx+n
步骤:
1.求交点:
将抛物线方程与直线方程联立,解方程
m
x
+
n
=
a
x
2
+
b
x
+
c
mx+n = ax^2 + bx + c
mx+n=ax2+bx+c
2. 计算面积:
通过积分计算抛物线和直线之间的面积。面积可以通过定积分来计算:
A
r
e
a
=
∫
x
1
x
2
∣
(
a
x
2
+
b
x
+
c
)
−
(
m
x
+
n
)
d
x
Area=\int_{x1}^{x2}|(ax^2 + bx + c)-(mx+n) \, dx
Area=∫x1x2∣(ax2+bx+c)−(mx+n)dx
C语言实现示例
(第一行输入数据组数,n组数据,后面依次输入每组数据的三个坐标)
#include <stdio.h>
#include <math.h>
double a, b, c, k, d;
double integral(double x) {
return a * x * x * x / 3.0 - (2 * a * b + k) * x * x / 2.0 + (a * b * b + c - d) * x;
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
double x1, y1, x2, y2, x3, y3;
scanf("%lf %lf", &x1, &y1);
scanf("%lf %lf", &x2, &y2);
scanf("%lf %lf", &x3, &y3);
b = x1;
c = y1;
a = (y2 - y1) / ((x2 - x1) * (x2 - x1));
k = (y3 - y2) / (x3 - x2);
d = y2 - k * x2;
double ans = integral(x3) - integral(x2);
printf("%.1lf\n", ans);
}
return 0;
}