计算抛物线与直线的面积-C

计算抛物线与直线之间的面积,需要先了解抛物线和直线的方程,然后通过积分来计算它们之间的面积。假设抛物线的方程为 y = a x 2 + b x + c y = ax^2 + bx + c y=ax2+bx+c,直线的方程为 y = m x + n y = mx + n y=mx+n
步骤:
1.求交点:

将抛物线方程与直线方程联立,解方程 m x + n = a x 2 + b x + c mx+n = ax^2 + bx + c mx+n=ax2+bx+c
2. 计算面积:
通过积分计算抛物线和直线之间的面积。面积可以通过定积分来计算:
A r e a = ∫ x 1 x 2 ∣ ( a x 2 + b x + c ) − ( m x + n )   d x Area=\int_{x1}^{x2}|(ax^2 + bx + c)-(mx+n) \, dx Area=x1x2(ax2+bx+c)(mx+n)dx

C语言实现示例
(第一行输入数据组数,n组数据,后面依次输入每组数据的三个坐标)

#include <stdio.h>
#include <math.h>

double a, b, c, k, d;

double integral(double x) {
    return a * x * x * x / 3.0 - (2 * a * b + k) * x * x / 2.0 + (a * b * b + c - d) * x;
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        double x1, y1, x2, y2, x3, y3;
        scanf("%lf %lf", &x1, &y1);
        scanf("%lf %lf", &x2, &y2);
        scanf("%lf %lf", &x3, &y3);

        b = x1;
        c = y1;
        a = (y2 - y1) / ((x2 - x1) * (x2 - x1));
        k = (y3 - y2) / (x3 - x2);
        d = y2 - k * x2;

        double ans = integral(x3) - integral(x2);
        printf("%.1lf\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值