Java多线程学习(七)

Java多线程学习(七)

2020.3.3学习总结

1.为什么要使用线程池

线程池优势:线程池做的工作只要是控制运行的线程数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了线程池的最大线程数量,超出数量的线程排队等候,等其他线程执行完成后,再从队列中取出任务来执行。
它的主要特点是:线程复用,控制最大并发数,管理线程。

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等待线程创建就可尽快执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
2. 线程池的使用

1.架构图,Executor,Executors,ExecutorService,ThreadPoolExecutor
在这里插入图片描述

2.构造方法

执行长期任务性能好,创建一个线程池,一池拥有n个固定的线程,有固定线程数的线程池

ExecutorService executorService = Executors.newFixedThreadPool(int n);

一池拥有1个固定的线程,任务一个一个地执行

ExecutorService executorService = Executors.newSingleThreadExecutor();

执行很多短期异步任务,线程池根据需要创建新线程,但再先前构建的线程可以时将重用它们,可扩容。

ExecutorService executorService2 = Executors.newCachedThreadPool();

上述三个构造方法分别对应:
(1)

	public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

(2)

public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

(3)

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
3.线程池的七大参数
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
  • corePoolSize 线程池中的常驻核心线程数
  • maximumPoolSize 线程池中能容纳同时执行的最大线程数,此值必须大于等于1
  • keepAliveTime 多余的空闲线程的存活时间,当前线程池中线程数量超过corePoolSize时,当空闲时间达到keepAliveTime时,多余线程会被销毁直到只剩下corePoolSize个线程位置
  • unit keepAliveTime的参数
  • workQueue 任务队列(阻塞队列,相当于候客区),被提交但尚未被执行的任务,控制了线程的并发数
  • threadFactory 表示生产线程池中工作线程的线程工厂,用于创建线程,一般默认即可
  • handler 拒绝策略,表示当队列满了,并且工作线程大于等于线程池的最大线程数时,如何来拒绝请求执行的Runnable的策略
4.线程池的底层工作原理

结合自己的理解,我画了一个这样的流程图:
在这里插入图片描述
(1)创建了线程池后,开始等待请求
(2)当调用execute()方法添加一个请求任务时,线程池会做如下判断:

  1. 如果正在运行的线程数量小于corePoolSize,那么马上创建线程运行这个任务;
  2. 如果正在运行的线程数量大于或等于corePoolSize,那么将这个任务加入到阻塞队列中;
  3. 如果阻塞队列满了,且正在运行的线程数量还小于maximumPoolSize,那么线程池会创建非核心线程来离立刻执行这个任务;
  4. 如果队列满了,且正在运行的线程数量大于或等于maximumPoolSize,那么线程池会启动拒绝策略来拒绝任务;

(3)当一个线程完成任务时,它会从队列中获取下一个任务来执行
(4)当一个线程空闲,且超过了keepAliveTime时,线程池会判断:

  1. 如果当前运行的线程数大于corePoolSize,那么这些空闲线程会被停止
  2. 如果线程池的所有任务完成后,线程池中的线程都会收缩到corePoolSize的大小。
5.线程池中如何设置合理参数

1.使用哪种线程池?其实是一个也不用,而是自己手写。
在这里插入图片描述
2.自定义一个线程池

package com.Zhongger.Day08;

import java.util.concurrent.*;

/**
 * @Author Zhongger
 * @Description 线程池
 * @Date 20203.3
 */
public class ExecutorTest {
    public static void main(String[] args) {
       ExecutorService executorService = new ThreadPoolExecutor(
                2,
                5,
                2L,
                TimeUnit.SECONDS,
                new LinkedBlockingDeque<>(3),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
        for (int i = 0; i < 8; i++) {
            executorService.execute(()->{
                System.out.println(Thread.currentThread().getName()+"\t 执行任务");
            });
        }
    }
}

上述自定义线程池中:
corePoolSize=2 即核心线程数为2
maximumPoolSize=5 即最大线程数为5,能够容纳的线程数为5
keepAliveTime=2L,unit=TimeUtil.SECONDS 即非核心线程的存活时间为2秒
workQueue=new LinkedBlockingDeque<>(3) 即阻塞队列中最大能容纳三个等待的任务
threadFactory=Executors.defaultThreadFactory() 即创建线程的工厂为默认的线程工厂
handler=new ThreadPoolExecutor.AbortPolicy() 即使用AbortPolicy拒绝策略

运行一波:

public static void main(String[] args) {
       ExecutorService executorService = new ThreadPoolExecutor(
                2,
                5,
                2L,
                TimeUnit.SECONDS,
                new LinkedBlockingDeque<>(3),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
        for (int i = 0; i < 8; i++) {
            executorService.execute(()->{
                System.out.println(Thread.currentThread().getName()+"\t 执行任务");
            });
        }
    }

结果如下:
在这里插入图片描述
用到了五个线程,完成了8个任务。
如果把任务数改一改,改成i < 9,运行一波,结果如下:
在这里插入图片描述
显然,有一个任务被拒绝了。
所以,得出一个结论,线程池可处理的最大任务数=maximumPoolSize+阻塞队列的最大容量数

6.线程池的四大拒绝策略

(1)AbortPolicy(默认):直接抛出RejectedExecutionException异常,阻止系统正常运行
在这里插入图片描述
(2)CallerRunsPolicy:运行者调用的一种调节机制,该策略不会抛弃任务,也不会抛出异常,而是将某些任务回退到调用者,从而降低新任务的流量。
在这里插入图片描述
(3)DiscardPolicy:默默地丢弃无法处理的任务,不予任何处理也不抛出异常,如果允许任务丢失,这是最好的一种策略
在这里插入图片描述
(4)DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入到队列中,尝试再次提交当前任务

在这里插入图片描述

7.分支合并框架

将一个复杂的任务拆分成多个小任务,再把小任务的结果合并,得到该复杂任务的结果。
以下是计算0~100的和的案例:

package com.Zhongger.Day08;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;

/**
 * @Author Zhongger
 * @Description
 * @Date
 */
public class ForkJoinDemo {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        MyTask myTask = new MyTask(0, 100);

        ForkJoinPool forkJoinPool = new ForkJoinPool();

        ForkJoinTask<Integer> forkJoinTask = forkJoinPool.submit(myTask);

        System.out.println(forkJoinTask.get());

        forkJoinPool.shutdown();
    }
}
class MyTask extends RecursiveTask<Integer>{
    private static final Integer ADJUST_VALUE=10;

    private int begin;
    private int end;
    private int result;

    public MyTask(int begin, int end) {
        this.begin = begin;
        this.end = end;
    }

    @Override
    protected Integer compute() {
        if ((end-begin)<=ADJUST_VALUE){
            for (int i = begin; i <= end; i++) {
                result=result+i;
            }
        }else {
            int middle=(end+begin)/2;
            MyTask myTask1 = new MyTask(begin, middle);
            MyTask myTask2 = new MyTask(middle + 1, end);
            myTask1.fork();
            myTask2.fork();
            result=myTask1.join()+myTask2.join();
        }
        return result;
    }
}

结果为:
在这里插入图片描述

8.异步回调
package com.Zhongger.Day08;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;

/**
 * @Author Zhongger
 * @Description
 * @Date
 */
public class CompletableFutureDemo {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //异步调用,无返回值
        CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(() -> {
            System.out.println(Thread.currentThread().getName() + "无返回值,update mysql ok");
        });
        completableFuture.get();

        //异步回调
        CompletableFuture<Integer> integerCompletableFuture = CompletableFuture.supplyAsync(() -> {
            System.out.println(Thread.currentThread().getName() + "无返回值,insert mysql ok");
            int flag=10/0;
            return 1024;
        }).whenComplete((t,u)->{
            System.out.println("t:"+t);
            System.out.println("u:"+u);
        }).exceptionally(f->{
            System.out.println("exception:"+f.getMessage());
            return 404;
        });//有返回值
        System.out.println(integerCompletableFuture.get());
    }
}

9.总结

Java多线程的学习就暂告一段落了,掌握程度只能说是了解吧,后期还要多多巩固,并且多看看面试题,加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值