自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 深度学习 07- 目标检测基础

Overview:In the object detection, bounding boxes are the most catptured our attention. These boxes are used to target the object. Which is 4 dimensional entities defined by left-upper and right-bottom points.There are key components about the object dete

2023-12-09 11:18:40 47

原创 深度学习05 - 一阶全卷积目标检测实例(FCOS)

Fully-Convolutional One-Stage Object Detection参考:EECS 498-007/598-005 Assignment 4-1: One-Stage Object Detector论文地址v1论文v2 不同于使用Anchor去确定目标,FCOS是使用全卷积网络通过确定特征图上的每个位置来预测该点距离目标的距离(左上右下 LTRB),如下图:该流程与第一版的网络的不同点在于最后将regression 和centre-ness分支放在一起。该文中使用的是第二版的网络

2023-12-08 23:27:30 949 1

原创 cs231n-AssignmentNote01-Assignment 2

Assignment2 code: downloaded hereQ1: Multi-Layer Fully Connected Neural NetworksIn this question, we need to implement a fully connected network with an arbitrary number of hidden layers.The main thing to do is implement the initiailzation, forward and

2023-11-23 17:13:43 97

原创 cs231n-AssignmentNote00-Assignment 1

【代码】cs231n-AssignmentNote00-Assignment 1。

2023-11-21 11:17:06 46

原创 CS231n-Lecture Note-06-Training Neural Networks

​。

2023-11-16 17:11:55 54 1

原创 CS231n-Lecture Note-05-CNN Architectures

𝛾and𝛽.𝛾and𝛽.𝛾and𝛽1. 2.3.

2023-11-15 17:44:32 52

原创 CS231n-Lecture Note-04-Image Classification with CNN

In the previous section, we mostly talked about Neural Networks. CNN is similar to that. Both are made up of neurons with learnable weights and biases. Each neuron receives some inputs and outputs with non-linearity. Still has loss function.The difference

2023-11-15 10:17:30 54

原创 CS231n-Lecture Note03-Backpropagation

​In this formula, the function max(), we haven't talked yet.The function is called activation fucntion, with max(0, x) which is called ReLU.Activation functions transform linear into non-linear.The more detail about activation functions I have disc

2023-11-13 20:11:54 51

原创 CS231n-Lecture Note02-Optimization

In the last lecture, we learned about image classifiers, nerest neighbor and K-NN. And use cross-validation to tune hyperparameters. With the lack of nerest neighbor and K-NN, we have implemented Linear Classifier which will reduce the expense of calculati

2023-11-13 17:28:05 209

原创 CS231n-Course Note01-Image Classification with Linear Classifiers

CS231n-Course Note01-Image Classification with Linear ClassifiersAs a core task in Computer Vision, Image Classification has two basic data-driven approaches which is K-nearest neighbor and linear classifier.

2023-11-10 21:56:22 121 1

原创 深度学习06-激活函数(activiation function)

在神经网络中,若神经元接收D个输入,此时将输入看为向量,并用净输入(Net Input)来表示一个神经元所获得的输入信号x的加权和[1]。;w是权重(weight),b是偏置(bias)该式子是一个线性的公式可看作。为了将其转换为非线性,则在z的输入后添加激活函数。典型的神经元结构如图所示:非线性函数根据弧度或者输出范围来分类sigmoid函数的值域为,适用于预测概率的场景。并适用于多分类场景。例如:如果一个人随机选择一星期7天中的一天,选择星期日的发生比[4](odds)是

2023-11-09 17:11:17 97 1

原创 深度学习04-优化器

在反向传播中,计算梯度时,指引损失函数(目标函数())的各个参数()往正确的方向更新合适的大小,使得更新后的各个参数让损失函数(目标函数)值不断逼近全局最小。[1]简单说就是通过优化器通过权重和学习率来使loss最小。在寻找梯度的下山问题中, 该往哪个方向下山(优化方向),在优化器中反映为梯度或动量。而每步的长短,则为学习率(

2023-11-06 20:35:56 75

原创 深度学习03-全连接网络

step 3: 计算loss (softmax), 反向传播计算梯度。x的形状为(N, d_1, ..., d_k),其中N是样本的数量。每个样本的形状为:(d_1, ..., d_k)step 3: 用softmax计算loss,用。step 2: 向前传播计算scores。step 2:计算score(预测值)因输入和权重的形状不一样,故用。step 1: 初始化w和b。修改x的形状为(N,D)。每一个神经元都与每层连接。step 1: 计算h1。第二层:ReLU (

2023-11-06 06:27:02 209

原创 Python01-unpacking function arguments

【代码】Python01-unpacking function arguments。

2023-11-03 16:38:50 52

原创 深度学习02-反向传播(backward propagation)

链式法则(chain rule)(按照相反的顺序,从输出层遍历网络,依次计算每个中间变量和参数的梯度)其中W是权重,b是偏置(bias), a是激活函数(tanh, ReLU, sigmoid等), x是输入数据,y是标签(输出值)。将y与s通过代价函数(cost fucntion)比较。卷积核(fliter)的数量=神经元的数量,每个神经元对卷积的输入执行不同的卷积。⚠️:其中W,b都是矩阵(matrices),右上角的角标表示层数。特征图的结果是应用了卷积核(mapping,stride)后的结果。

2023-11-03 15:46:37 745

原创 Pytorch01-tensor

torch.chunk()将tensor按dim分割成chunks个tensor,返回元组。,此时torch.autograd会记录相关运算实现自动求导。将python的list或序列数据转化为Tensor,torch.split()是将tensor->多个块。可用tensor.clone() 拷贝tensor。:对tensor进行维度的压缩,去掉维数为1的。torch.Tensor()可传数据和。,建议使用torch.tensor()torch.tensor()只能传入。std是tensor。

2023-11-01 20:15:21 55 1

原创 深度学习01-向前传播(forward propagation)

1. 输入特征x与权重W相乘得到scores,2. 用scores和真实的值计算损失loss。3. 用计算出的hinge loss+ regularization后得出Loss。4. 再将得分值送入softmax分类器,将分值转化为概率问题。4.14.2。

2023-10-27 14:35:36 202 1

原创 机器学习算法03-支持向量机(SVM)

数据集:为样本的类别(label):当为正例的时候,当为负例的时候。决策方程:其中是对数做了变换。

2023-10-24 11:42:33 49

原创 机器学习算法02-逻辑回归(Logistic Regression)

预测一个学生的成绩,范围[0, 100];(此时该问题为回归问题)其中[0, 60)为差生,[60, 100]为优生。(此时将问题转化为分类问题)

2023-10-23 20:14:11 89 1

原创 机器学习 算法01-Linear Regression

将线性方程拟合到观测数据来建模两个变量之间的关系。

2023-10-19 15:12:53 55

原创 一些比较好的图像识别的demo

1. 基于 pytorch模型猫狗图片识别_pytorch图片识别_爱学习的Gunther的博客-CSDN博客2. 用Pytorch自建6层神经网络训练Fashion-MNIST数据集,测试准确率达到 92%_设计神经网络训练fashionminist_frank909的博客-CSDN博客3. YOLO5:YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析_yolov5源码解析_路人贾'ω'的博客-CSDN博客4.基于pytorch搭建AlexNet神经网络用于花类识别_pytorch 识别花朵

2023-05-02 23:21:18 93 1

原创 图像识别遇到的问题

A2:小数据集类(低于百万)一般按照训练集:60%,验证集:20%,测试集:20% 划分,在数据增强前进行划分,及对源数据进行划分。数据划分code:(本代码中只按照训练集和验证集按照8:2的比例进行划分,若需划分测试集,可在划分好后的训练集上再次进行划分)A1: 收集可直接采用网络爬虫(crawler)的方式爬取数据,需做人工的图像筛选。网络爬取code:(代码是引用别人的,但是忘记文章来源)Q3: 训练集、验证集准确度高,测试集准确度小。

2023-05-02 23:14:24 306 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除