算法训练day20|二叉树part06(LeetCode654.最大二叉树、LeetCode617.合并二叉树、LeetCode700.二叉搜索树中的搜索、LeetCode98.验证二叉搜索树)

654.最大二叉树

题目链接🔥🔥
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
在这里插入图片描述

思路分析

确定递归函数的参数和返回值
参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

代码如下:

TreeNode* constructMaximumBinaryTree(vector<int>& nums)
  • 确定终止条件

题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。

那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

代码如下:

TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
    node->val = nums[0];
    return node;
}
  • 确定单层递归的逻辑

这里有三步工作

  1. 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

代码如下:

int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
    if (nums[i] > maxValue) {
        maxValue = nums[i];
        maxValueIndex = i;
    }
}
TreeNode* node = new TreeNode(0);
node->val = maxValue;
  1. 最大值所在的下标左区间 构造左子树

这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

代码如下:

if (maxValueIndex > 0) {
    vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
    node->left = constructMaximumBinaryTree(newVec);
}
  1. 最大值所在的下标右区间 构造右子树

判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

代码如下:

if (maxValueIndex < (nums.size() - 1)) {
    vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
    node->right = constructMaximumBinaryTree(newVec);
}

代码实现

标答:

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        TreeNode* node = new TreeNode(0);
        if (nums.size() == 1) {
            node->val = nums[0];
            return node;
        }
        // 找到数组中最大的值和对应的下标
        int maxValue = 0;
        int maxValueIndex = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (nums[i] > maxValue) {
                maxValue = nums[i];
                maxValueIndex = i;
            }
        }
        node->val = maxValue;
        // 最大值所在的下标左区间 构造左子树
        if (maxValueIndex > 0) {
            vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
            node->left = constructMaximumBinaryTree(newVec);
        }
        // 最大值所在的下标右区间 构造右子树
        if (maxValueIndex < (nums.size() - 1)) {
            vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
            node->right = constructMaximumBinaryTree(newVec);
        }
        return node;
    }
};

优化代码

以上代码比较冗余,效率也不高,每次还要切割的时候每次都要定义新的vector(也就是数组),但逻辑比较清晰。
一种优化思路:就是每次分隔不用定义新的数组,而是通过下标索引直接在原数组上操作。

class Solution {
private:
    // 在左闭右开区间[left, right),构造二叉树
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left >= right) return nullptr;

        // 分割点下标:maxValueIndex
        int maxValueIndex = left;
        for (int i = left + 1; i < right; ++i) {
            if (nums[i] > nums[maxValueIndex]) maxValueIndex = i;
        }

        TreeNode* root = new TreeNode(nums[maxValueIndex]);

        // 左闭右开:[left, maxValueIndex)
        root->left = traversal(nums, left, maxValueIndex);

        // 左闭右开:[maxValueIndex + 1, right)
        root->right = traversal(nums, maxValueIndex + 1, right);

        return root;
    }
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        return traversal(nums, 0, nums.size());
    }
};

我的:

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        if(nums.size()==0) return nullptr;
        int maxValue=0;
        int maxValueIndex=0;
        for(int i=0;i<nums.size();i++){
            if(nums[i]>maxValue){
                maxValue=nums[i];
                maxValueIndex=i;
            }
        }
        TreeNode* node=new TreeNode(nums[maxValueIndex]);
        vector<int> leftvec(nums.begin(),nums.begin()+maxValueIndex);
        vector<int> rightvec(nums.begin()+maxValueIndex+1,nums.end());
        node->left=constructMaximumBinaryTree(leftvec);
        node->right=constructMaximumBinaryTree(rightvec);
        return node;
    }
};

后两版简洁的原因在于允许空节点进入递归,所以不用在递归的时候加判断节点是否为空,但终止条件也要有所变化。
第一版终止条件,是遇到叶子节点就终止,因为空节点不会进入递归。
后两版终止条件,是遇到空节点,也就是数组区间为0,就终止了。

总结思考

好好体会一下 为什么构造二叉树都是 前序遍历


617.合并二叉树

题目链接🔥
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
在这里插入图片描述

递归法

  1. 确定递归函数的参数和返回值:

首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
代码如下:

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:

因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

代码如下:

if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
  1. 确定单层递归的逻辑:

单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

t1->val += t2->val;

左右子树的遍历合并:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

完整代码:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1==nullptr) return root2;
        if(root2==nullptr) return root1;
        root1->val=root1->val+root2->val;
        root1->left=mergeTrees(root1->left,root2->left);
        root1->right=mergeTrees(root1->right,root2->right);
        return root1;
    }
};

如上的方法修改了t1的结构,当然也可以不修改t1和t2的结构,重新定义一个树。

不修改输入树的结构,前序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1==nullptr) return root2;
        if(root2==nullptr) return root1;
        root1->val=root1->val+root2->val;
        TreeNode* root=new TreeNode(root1->val);
        root->left=mergeTrees(root1->left,root2->left);
        root->right=mergeTrees(root1->right,root2->right);
        return root;
    }
};

迭代法

就是把两个树的节点同时加入队列进行比较。使用队列模拟层序遍历。

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        queue<TreeNode*> que;
        que.push(t1);
        que.push(t2);
        while(!que.empty()) {
            TreeNode* node1 = que.front(); que.pop();
            TreeNode* node2 = que.front(); que.pop();
            // 此时两个节点一定不为空,val相加
            node1->val += node2->val;

            // 如果两棵树左节点都不为空,加入队列
            if (node1->left != NULL && node2->left != NULL) {
                que.push(node1->left);
                que.push(node2->left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1->right != NULL && node2->right != NULL) {
                que.push(node1->right);
                que.push(node2->right);
            }

            // 当t1的左节点 为空 t2左节点不为空,就赋值过去
            if (node1->left == NULL && node2->left != NULL) {
                node1->left = node2->left;
            }
            // 当t1的右节点 为空 t2右节点不为空,就赋值过去
            if (node1->right == NULL && node2->right != NULL) {
                node1->right = node2->right;
            }
        }
        return t1;
    }
};

操作 node1 就是在操作 t1 中对应的节点。

思考总结

习惯了操作一个二叉树,一起操作两个二叉树,还会有点懵懵的。
迭代法中,一般一起操作两个树都是使用队列模拟类似层序遍历,同时处理两个树的节点,这种方式最好理解,如果用模拟递归的思路的话,要复杂一些。


700.二叉搜索树中的搜索

题目链接🔥
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
在这里插入图片描述

递归法

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

确定递归函数的参数和返回值
递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

TreeNode* searchBST(TreeNode* root, int val)

确定终止条件
如果root为空,或者找到这个数值了,就返回root节点。

if (root == NULL || root->val == val) return root;

确定单层递归的逻辑
看看二叉搜索树的单层递归逻辑有何不同。

因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;

递归函数的返回值不为空,要用一个变量将其接住。
所以要 result = searchBST(root->left, val)
整体代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if(root==nullptr||root->val==val) return root;
        TreeNode* result=nullptr;
        if(root->val>val) result=searchBST(root->left,val);
        if(root->val<val) result=searchBST(root->right,val);
        return result;
    }
};

迭代法

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。
对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        TreeNode* cur=root;
        while(cur!=nullptr){
            if(cur->val>val) cur=cur->left;
            else if(cur->val<val) cur=cur->right;
            else return cur;
        } 
        return nullptr;  
    }
};

思考总结

本题比较简单,了解一下 二叉搜索树的特性,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。


98.验证二叉搜索树

题目链接🔥🔥
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

递归法1

可以递归中序遍历将二叉搜索树转变成一个数组,比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。

class Solution {
public:
    vector<int> vec;
    void traversal(TreeNode* root){
        if(root==nullptr) return;
        traversal(root->left);
        vec.push_back(root->val);
        traversal(root->right);
    }
    bool isValidBST(TreeNode* root) {
        traversal(root);
        for(int i=1;i<vec.size();i++){
            if(vec[i]<vec[i-1]) return false;
        }
        return true;
    }
};

递归法2

陷阱

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了。

if (root->val > root->left->val && root->val < root->right->val) {
    return true;
} else {
    return false;
}

左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。
例如:
在这里插入图片描述

递归三部曲:

确定递归函数,返回值以及参数
要定义一个longlong的全局变量,用来比较遍历的节点是否有序,因为后台测试数据中有int最小值,所以定义为longlong的类型,初始化为longlong最小值。

long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root)

注意递归函数要有bool类型的返回值, 我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值? (opens new window)中讲了,只有寻找某一条边(或者一个节点)的时候,递归函数会有bool类型的返回值。

其实本题是同样的道理,我们在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root)

确定终止条件
如果是空节点 是不是二叉搜索树呢?

是的,二叉搜索树也可以为空!

if (root == NULL) return true;

确定单层递归的逻辑
中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

bool left = isValidBST(root->left);         // 左

// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val; // 中
else return false;

bool right = isValidBST(root->right);       // 右
return left && right;

完整代码:

class Solution {
public:
    long long maxVal=LONG_MIN;
    bool isValidBST(TreeNode* root) {
        if(root==nullptr) return true;
        bool left=isValidBST(root->left);
        if(root->val>maxVal) maxVal=root->val;
        else return false;
        bool right=isValidBST(root->right);
        return left&&right;
    }
};

双指针递归法3

以上代码是因为后台数据有int最小值测试用例,所以都把maxVal改成了longlong最小值。

如果测试数据中有 longlong的最小值,怎么办?

不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。

class Solution {
public:
    TreeNode* pre=nullptr;
    bool isValidBST(TreeNode* root) {
        if(root==nullptr) return true;
        bool left=isValidBST(root->left);
        if(pre!=nullptr&&pre->val>=root->val) return false;
        pre=root;// 记录前一个节点
        bool right=isValidBST(root->right);
        return left&&right;
    }
};

迭代法

迭代法中序遍历的基础上稍加改动就可以了,中序遍历还不熟练可以看这里

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        if(root==nullptr) return true;
        stack<TreeNode*> st;
        TreeNode* cur=root;
        TreeNode* pre=nullptr;
        while(cur!=nullptr||!st.empty()){
            while(cur!=nullptr){
                st.push(cur);
                cur=cur->left;
            }
            if(cur==nullptr){
                cur=st.top();      
                if(pre!=nullptr&&pre->val>=cur->val) return false;
                pre=cur;
                st.pop();
                cur=cur->right; 
            }
        }
        return true;
    }
};

思考总结

遇到 搜索树,一定想着中序遍历,这样才能利用上特性。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值