描述
有两棵大小为n且以1为根的树,设为树1和树2,令根的深度为0,在树1上编号为x的点,在树2中编号为a[x]。
定义点对(x,y)的价值为树1中x和y的最近公共祖先的深度+树2中a[x]和a[y]的最近公共祖先的深度。
输出所有点对的价值的最大值。
示例1
输入:
3,[0,2,1,3],[0,0,1,1],[0,0,1,2]
返回值:
1
备注:
输入时给出n和三个数组a,b,c。 a数组下标从0到n,意义如题,保证a[0]=0,a[1]~a[n]的数互不相同且1~n各只出现一次。 b数组下标从0到n,为描述树1的数组,b[x]表示树1上x的父亲节点的编号,其中b[0]=b[1]=0.
c数组下标从0到n,为描述树2的数组,c[x]表示树2上x的父亲节点的编号,其中c[0]=c[1]=0.
输出一个整数,表示最大的价值。
n<=100000
以下是Java代码实现:
import java.util.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* @param n int整型
* @param a int整型一维数组
* @param b int整型一维数组
* @param c int整型一维数组
* @return int整型
*/
public int wwork(int n, int[] a, int[] b, int[] c) {
int[][] tree1 = new int[n + 1][2];
int[][] tree2 = new int[n + 1][2];
for (int i = 2; i <= n; i++) {
tree1[i][0] = b[i];
tree1[i][1] = a[i];
tree2[i][0] = c[i];
tree2[i][1] = a[i];
}
int[][] lca1 = lowestCommonAncestor(tree1);
int[][] lca2 = lowestCommonAncestor(tree2);
int maxValue = 0;
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
int value = lca1[i][j] + lca2[a[i]][a[j]];
maxValue = Math.max(maxValue, value);
}
}
return maxValue;
}
private int[][] lowestCommonAncestor(int[][] tree) {
int n = tree.length - 1;
int[][] lca = new int[n + 1][n + 1];
for (int i = 1; i <= n; i++) {
lca[i][i] = i;
}
for (int i = 2; i <= n; i++) {
lca[i][tree[i][0]] = lca[tree[i][0]][i] = lca[i][i];
}
for (int k = 2; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (lca[i][k] != 0 && lca[k][j] != 0) {
lca[i][j] = lca[i][lca[i][k]];
}
}
}
}
return lca;
}
}
在这个实现中,我们定义了一个名为Solution
的类,其中包含一个名为wwork
的公共方法。该方法接收四个参数:一个整数n
,表示树的大小;一个整数数组a
,表示树1中每个节点的值;一个整数数组b
,表示树1中每个节点的父节点;一个整数数组c
,表示树2中每个节点的父节点。该方法返回一个整数,表示所有点对的价值的最大值。
在方法中,首先定义了两个二维数组tree1
和tree2
,用于存储树1和树2的节点信息。然后,使用一个for
循环遍历输入数组a
和b
,将它们的值存储到tree1
和tree2
中。接下来,使用一个lowestCommonAncestor
方法计算树1和树2中每个节点的最近公共祖先,并将结果存储在lca1
和lca2
中。最后,使用一个for
循环遍历所有点对,计算它们的价值,并将最大值存储在maxValue
中。
lowestCommonAncestor
方法使用了一个二维数组lca
,用于存储每个节点的最近公共祖先。首先,使用一个for
循环将每个节点的自身设置为其最近公共祖先。然后,使用一个for
循环遍历输入数组tree
,将每个节点的父节点设置为其最近公共祖先。接下来,使用一个for
循环遍历所有节点对,计算它们的最近公共祖先,并将结果存储在lca
中。最后,返回lca
数组。