TH10 两棵树的问题

Java代码实现,通过构建树结构并计算树1和树2中点对最近公共祖先的深度之和,找到最大值。涉及数据结构和图算法问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

有两棵大小为n且以1为根的树,设为树1和树2,令根的深度为0,在树1上编号为x的点,在树2中编号为a[x]。

定义点对(x,y)的价值为树1中x和y的最近公共祖先的深度+树2中a[x]和a[y]的最近公共祖先的深度。

输出所有点对的价值的最大值。

示例1

输入:

3,[0,2,1,3],[0,0,1,1],[0,0,1,2]

返回值:

1

备注:

输入时给出n和三个数组a,b,c。
a数组下标从0到n,意义如题,保证a[0]=0,a[1]~a[n]的数互不相同且1~n各只出现一次。
b数组下标从0到n,为描述树1的数组,b[x]表示树1上x的父亲节点的编号,其中b[0]=b[1]=0.

c数组下标从0到n,为描述树2的数组,c[x]表示树2上x的父亲节点的编号,其中c[0]=c[1]=0.

输出一个整数,表示最大的价值。

n<=100000
 

以下是Java代码实现:

 
import java.util.*;

public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * @param n int整型
     * @param a int整型一维数组
     * @param b int整型一维数组
     * @param c int整型一维数组
     * @return int整型
     */
    public int wwork(int n, int[] a, int[] b, int[] c) {
        int[][] tree1 = new int[n + 1][2];
        int[][] tree2 = new int[n + 1][2];
        for (int i = 2; i <= n; i++) {
            tree1[i][0] = b[i];
            tree1[i][1] = a[i];
            tree2[i][0] = c[i];
            tree2[i][1] = a[i];
        }
        int[][] lca1 = lowestCommonAncestor(tree1);
        int[][] lca2 = lowestCommonAncestor(tree2);
        int maxValue = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = i + 1; j <= n; j++) {
                int value = lca1[i][j] + lca2[a[i]][a[j]];
                maxValue = Math.max(maxValue, value);
            }
        }
        return maxValue;
    }

    private int[][] lowestCommonAncestor(int[][] tree) {
        int n = tree.length - 1;
        int[][] lca = new int[n + 1][n + 1];
        for (int i = 1; i <= n; i++) {
            lca[i][i] = i;
        }
        for (int i = 2; i <= n; i++) {
            lca[i][tree[i][0]] = lca[tree[i][0]][i] = lca[i][i];
        }
        for (int k = 2; k <= n; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    if (lca[i][k] != 0 && lca[k][j] != 0) {
                        lca[i][j] = lca[i][lca[i][k]];
                    }
                }
            }
        }
        return lca;
    }
}

在这个实现中,我们定义了一个名为Solution的类,其中包含一个名为wwork的公共方法。该方法接收四个参数:一个整数n,表示树的大小;一个整数数组a,表示树1中每个节点的值;一个整数数组b,表示树1中每个节点的父节点;一个整数数组c,表示树2中每个节点的父节点。该方法返回一个整数,表示所有点对的价值的最大值。

在方法中,首先定义了两个二维数组tree1tree2,用于存储树1和树2的节点信息。然后,使用一个for循环遍历输入数组ab,将它们的值存储到tree1tree2中。接下来,使用一个lowestCommonAncestor方法计算树1和树2中每个节点的最近公共祖先,并将结果存储在lca1lca2中。最后,使用一个for循环遍历所有点对,计算它们的价值,并将最大值存储在maxValue中。

lowestCommonAncestor方法使用了一个二维数组lca,用于存储每个节点的最近公共祖先。首先,使用一个for循环将每个节点的自身设置为其最近公共祖先。然后,使用一个for循环遍历输入数组tree,将每个节点的父节点设置为其最近公共祖先。接下来,使用一个for循环遍历所有节点对,计算它们的最近公共祖先,并将结果存储在lca中。最后,返回lca数组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清贫码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值