题目描述
你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中。
例如:
5 2 8
1 3 _
4 6 7
在游戏过程中,可以把空格与其上、下、左、右四个方向之一的数字交换(如果存在)。
例如在上例中,空格可与左、上、下面的数字交换,分别变成:
5 2 8 5 2 _ 5 2 8
1 _ 3 1 3 8 1 3 7
4 6 7 4 6 7 4 6 _
奇数码游戏是它的一个扩展,在一个n×nn\times nn×n的网格中进行,其中n为奇数,1个空格和1∼n×n−11\sim n\times n-11∼n×n−1这n×n−1n\times n-1n×n−1个数恰好不重不漏地分布在n*n的网格中。
空格移动的规则与八数码游戏相同,实际上,八数码就是一个n=3的奇数码游戏。
现在给定两个奇数码游戏的局面,请判断是否存在一种移动空格的方式,使得其中一个局面可以变化到另一个局面。
输入描述:
多组数据,对于每组数据: 第1行一个整数n,n<500n \lt 500n<500,n为奇数。 接下来n行每行n个整数,表示第一个局面。 接下来n行每行n个整数,表示第二个局面。 局面中每个整数都是0∼n×n−10\sim n\times n-10∼n×n−1之一,其中用0代表空格,其余数值与奇数码游戏中的意义相同,保证这些整数的分布不重不漏。
输出描述:
对于每组数据,若两个局面可达,输出TAK,否则输出NIE。
示例1
输入
3 1 2 3 0 4 6 7 5 8 1 2 3 4 5 6 7 8 0 1 0 0
输出
TAK TAK
为了解决这个问题,我们可以使用图的深度优先搜索(DFS)算法。首先,我们需要将给定的局面转换为某种标准形式,例如哈希或者数组表示,并确保两个局面都合法。然后从第一个局面开始,尝试所有可能的空格移动操作,如果某个移动序列能够达到第二个局面,则输出 "TAK";如果所有可能的移动都无法到达第二个局面,则输出 "NIE"。
下面是一个简化的C++实现思路:
Cpp
1#include <iostream>
2#include <vector>
3#include <unordered_set>
4
5using namespace std;
6
7const int MAX_N = 500;
8int grid1[MAX_N][MAX_N], grid2[MAX_N][MAX_N];
9bool visited[MAX_N * MAX_N][MAX_N * MAX_N];
10
11// 将当前局面的状态编码成一个整数
12int encode(int n, int grid[n][n]) {
13 int result = 0;
14 for (int i = 0; i < n; ++i) {
15 for (int j = 0; j < n; ++j) {
16 if (grid[i][j] == 0) continue;
17 result = result * (n*n - 1) + grid[i][j];
18 }
19 }
20 return result;
21}
22
23// 检查当前位置是否可以进行交换,并执行交换操作
24void swapIfPossible(int n, int grid[n][n], int x, int y) {
25 int dx[] = {-1, 1, 0, 0};
26 int dy[] = {0, 0, -1, 1};
27
28 for (int i = 0; i < 4; ++i) {
29 int newX = x + dx[i], newY = y + dy[i];
30 if (newX >= 0 && newX < n && newY >= 0 && newY < n && grid[newX][newY] != 0) {
31 swap(grid[x][y], grid[newX][newY]);
32 return;
33 }
34 }
35}
36
37// 使用深度优先搜索检查能否从grid1变换到grid2
38bool dfs(int n, int targetState) {
39 // 编码当前状态
40 int currentState = encode(n, grid1);
41
42 // 如果当前状态已经访问过或等于目标状态,则返回结果
43 if (visited[currentState][targetState] || currentState == targetState) {
44 return currentState == targetState;
45 }
46
47 // 标记当前状态已访问
48 visited[currentState][currentState] = true;
49
50 // 遍历网格,找到空格位置并尝试交换
51 for (int i = 0; i < n; ++i) {
52 for (int j = 0; j < n; ++j) {
53 if (grid1[i][j] == 0) {
54 swapIfPossible(n, grid1, i, j);
55 if (dfs(n, targetState)) {
56 return true;
57 }
58 // 回溯,撤销刚才的交换操作
59 swap(grid1[i][j], grid1[(i + dx[i % 4]) % n][(j + dy[j % 4]) % n]);
60 }
61 }
62 }
63
64 return false;
65}
66
67int main() {
68 int T;
69 cin >> T;
70
71 while (T--) {
72 int n;
73 cin >> n;
74
75 // 读取并存储两个局面
76 for (int i = 0; i < n; ++i) {
77 for (int j = 0; j < n; ++j) {
78 cin >> grid1[i][j];
79 }
80 }
81 for (int i = 0; i < n; ++i) {
82 for (int j = 0; j < n; ++j) {
83 cin >> grid2[i][j];
84 }
85 }
86
87 // 初始化访问标记矩阵
88 memset(visited, false, sizeof(visited));
89
90 // 将局面1编码后与局面2对比
91 if (encode(n, grid1) == encode(n, grid2)) {
92 cout << "TAK\n";
93 continue;
94 }
95
96 // 开始深度优先搜索
97 bool isReachable = dfs(n, encode(n, grid2));
98 cout << (isReachable ? "TAK" : "NIE") << "\n";
99 }
100
101 return 0;
102}
注意:上述代码中的encode
函数和swapIfPossible
函数需要根据实际情况进一步完善,这里仅给出大致思路。此外,由于题目数据范围较大,实际编程时应采用更高效的状态编码方式(如曼哈顿距离编码),以及优化搜索策略(如A搜索、IDA搜索等)。