动态规划问题 pat top

dynamic programming and linear programming, techniques of very broad applicability
that can be invoked when more specialized methods fail.

6.4 Knapsack

在这里插入图片描述
在这里插入图片描述

1025 Keep at Most 100 Characters

Given a string which contains only lower case letters, how many different non-empty strings you can get if you can keep AT MOST 100 characters in the original order? (Note: The string obtained is a “sub-sequence” of the original string.)

Input Specification:
Each input file contains one test case, which is only one line containing the string whose length is no larger than 1000.

Output Specification:
Output the number of different non-empty strings if you can only keep at most 100 characters. Since the answer might be super large, you only need to output the answer modulo 1000000007.

从初始想法上看
前i个字符串的所有子序列 和 第i个字符进行组合并去重复之后再想加就是 前i+1个的结果

输入一个字符串
但是我们希望坐标从1开始
方便我们的dp

string s;
cin>>s;
//坐标从0开始 solution1
const int maxn  = 1005;
char s[maxn];
cin>>s+1;
int n = strlen(s+1);
//solution2 这样应该也可以
string t;
cin>>t;
string s = '-';
s += t;

dp[i][j] 前i个 子序列长度为j的 数量

生成字符串的所有子序列字符串
子序列长度可以从1到n
我们将字符串前i个(前缀子串)作为一个子问题
对于当前第i个字符 可能是子序列最后一个字符也可能不是 两个状态
答案由这两个状态组成 - 重复值

可以当成背包
字符串的字符是物品, 容量是序列
每个物品可以选择作为最后一个拿 和 不是最后一个拿
dp[i][j]的值就是前i个物品刚好拿j个物品的取法

dp[i][j] = dp[i-1][j] + dp[i-1][j] -repeat;
repeat  = [以当前为结尾的字符上一次出现位置(作为最后一次拿)]()[形成j-1个子序列]
 [pos[s[i]] - 1][j-1]
#include <bits/stdc++.h>
using namespace std;

int main(){
    char s[1005];
    cin>>s+1;
    int n = strlen(s+1);
    int dp[n+1][n+1];
    for(int i = 0;i<=n;i++){
        dp[i][0] = 1; 
    }
    for(int i = 1;i<=n;i++){
        dp[0][i] = 0;
    }
    map<char,int> pos;
    for(int i = 1;i<=n;i++){
        for(int j = 1;j<=n;j++){
            if(j > i){dp[i][j] = 0; break;}
            int rep = 0;
            if(pos[s[i]] != 0){
             rep = dp[pos[s[i]] -1 ][j-1];
            }
            dp[i][j] = dp[i-1][j]+dp[i-1][j-1] - rep;
        }
        pos[s[i]] = i;
    }
    long long  ans = 0;
    for(int i = 1;i<=n;i++){
        ans += dp[n][i];
    }
  
    cout<<ans<<endl;
    
}

取模运算处理

#include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
const long long M = 1e9+7;
int main(){
    char s[1005];
    cin>>s+1;
    int n = strlen(s+1);
    long dp[n+1][n+1];
    for(int i = 0;i<=n;i++){
        for(int j= 0;j<=n;j++){
            dp[i][j] = 0;
        }
    }
    for(int i = 0;i<=n;i++){
        dp[i][0] = 1; 
    }
    for(int i = 1;i<=n;i++){
        dp[0][i] = 0;
    }
    int limit = n <= 100 ? n:100;
    map<char,int> pos;
    for(int i = 1;i<=n;i++){
        for(int j = 1;j<=limit;j++){
            if(j > i){dp[i][j] = 0; break;}
            int rep = 0;
            if(pos[s[i]] != 0){
             rep = dp[pos[s[i]] -1 ][j-1]%M;
            }
            dp[i][j] = dp[i-1][j]%M+dp[i-1][j-1]%M - rep%M;
            dp[i][j] %= M;
        }
        pos[s[i]] = i;
    }
    long long  ans = 0;
    for(int i = 1;i<=limit;i++){
        ans += dp[n][i];
        ans %= M;
    }
  
    cout<<ans<<endl;
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值