DJL Java环境下部署pytorch模型推理

本文介绍了如何在Java环境下利用DJL框架部署PyTorch模型,详细阐述了DJL的特性以及POM文件配置、模型加载过程中遇到的坑。通过设置Translator和Criteria来实现模型预测,并给出了加载本地模型的步骤,帮助开发者解决跨语言深度学习部署的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于大数据基本都是Java环境,希望与深度学习结合的话,需要将深度学习模型部署在Java环境下。传统方式使用flask搭建接口,在Java环境中对其调用,但通信时间和内存问题限制了这种方式的发展。

DJL是采用Java编写的深度学习框架,支持MXnet,Tensorflow,Pytorch引擎,这意味着同一个模型采用不同语言编写,在DJL框架中运行只需要更改依赖,代码完全一样即可执行。关于DJL更多的介绍大家可以浏览DJL官网,知乎,以及b站的课程。

知乎专栏:DJL深度学习库 - 知乎

b站课程录播:深度学习兽的个人空间_哔哩哔哩_Bilibili 

GitHub:DeepJavaLibrary · GitHub 

下面介绍部署pytorch模型步骤以及我个人遇到的一些坑,希望对大家有所帮助

首先是pom文件依赖

import torch
print(torch.__version__)

 首先使用该命令查看本地环境下的pytorch版本,根据本地的pytorch版本,选取合适的engine

<

### 如何使用DJL加载和使用预训练模型 为了展示如何利用DJL库加载并应用已有的预训练模型,在此提供了一个简单实例,该例子展示了怎样快速部署一个用于图像分类的任务。具体来说,这段代码实现了对手写数字图片的识别。 ```java import ai.djl.Model; import ai.djl.inference.Predictor; import ai.djl.modality.cv.ImageFactory; import ai.djl.repository.zoo.Criteria; import ai.djl.translate.TranslateException; Model model = Model.newInstance("mnist"); model.load(getClass().getClassLoader(), "mlp"); Criteria<Image, Classifications> criteria = Criteria.builder() .setTypes(Image.class, Classifications.class) .optModelUrls("/path/to/model") // 模型路径 .optTranslator(new ImageClassificationTranslator()) .optEngine("PyTorch") // 引擎选择 .build(); try (Predictor<Image, Classifications> predictor = model.newPredictor(criteria)) { BufferedImage img = ImageFactory.getInstance().fromFile(new File("test.png")); Classifications prediction = predictor.predict(img); } ``` 上述代码片段说明了几个重要方面: - 创建一个新的`Model`对象来表示要使用的神经网络架构[^1]。 - 调用`load()`函数加载本地磁盘上的特定目录下的权重文件。 - 构建`Criteria`类定义输入输出的数据类型以及转换逻辑,并指定了所采用的推理引擎。 - 使用`newPredictor()`方法初始化预测器,准备执行推断操作。 对于想要进一步优化性能或者自定义行为的情况,可以通过调整批量处理尺寸(`batchSize`)来自定义数据集构建方式[^2]: ```java int batchSize = 32; // 批量大小设置为32 Mnist trainingDataset = Mnist.builder() .optUsage(Usage.TRAIN) // 设置为训练模式 .setSampling(batchSize, true) .build(); Mnist validationDataset = Mnist.builder() .optUsage(Usage.TEST) // 设置为测试/验证模式 .setSampling(batchSize, true) .build(); ``` 此外,当涉及到更复杂的场景时,比如希望监控训练进度或是捕获中间状态以便后续分析,则可以考虑配置`Trainer`结构体及其关联组件——即通过`DefaultTrainingConfig`指定损失函数、评估指标以及其他必要的超参数;同时还可以注册`TrainingListener`接口实现类以获取周期性的反馈信息[^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值