由于大数据基本都是Java环境,希望与深度学习结合的话,需要将深度学习模型部署在Java环境下。传统方式使用flask搭建接口,在Java环境中对其调用,但通信时间和内存问题限制了这种方式的发展。
DJL是采用Java编写的深度学习框架,支持MXnet,Tensorflow,Pytorch引擎,这意味着同一个模型采用不同语言编写,在DJL框架中运行只需要更改依赖,代码完全一样即可执行。关于DJL更多的介绍大家可以浏览DJL官网,知乎,以及b站的课程。
知乎专栏:DJL深度学习库 - 知乎
b站课程录播:深度学习兽的个人空间_哔哩哔哩_Bilibili
GitHub:DeepJavaLibrary · GitHub
下面介绍部署pytorch模型步骤以及我个人遇到的一些坑,希望对大家有所帮助
首先是pom文件依赖
import torch
print(torch.__version__)
首先使用该命令查看本地环境下的pytorch版本,根据本地的pytorch版本,选取合适的engine
<