撑起CV的半边天:ResNet学习笔记

《Deep Residual Learning for Image Recognition》

2015 作者:何凯文

摘要

深的神经网络很难训练,我们用残差学习的框架使其容易

把层作为学习残差函数相对于层输入的方法,而不是unreferenced function

容易训练、精度高

对视觉来说,深度是很重要的

intro

DCNN好,越深得到的特征越多,但是

第一页图:在传统模型厂,层数大了之后训练不动,误差越来越大

identify mapping:浅的网络如果够好,深的网络不应该变差,但是实际做不到,SGD找不到最优解

本篇文章提出了一个mapping的方法:深度残差网络中残差块

image-20230306135145845

干什么:要学的是x,要在x的学习输出H(x)之上加层,加的时候不学第一次的输出H(x),而学F(x)=H(x)-x,即学到的东西和实际的x的残差,如此最后的输出是F(x)+x

相关工作

处理输入输出形状不同:1.在输入输出都添加额外的0,然他们对应2.投影,使用1X1的卷积

实现

把短边随机的裁到[256,480]大小,颜色调调

没有全连接所以没有dropout

实验

比较没有使用残差的18层和34层网络

在使用res前,18层的error要比34的小

使用了之后,34层的error比18的小,更好

在通道数大了之后添加bottomNet,对残差块的设计进行更高,先投影到64再卷积再投影回128、256。。。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值