《Deep Residual Learning for Image Recognition》
2015 作者:何凯文
摘要
深的神经网络很难训练,我们用残差学习的框架使其容易
把层作为学习残差函数相对于层输入的方法,而不是unreferenced function
容易训练、精度高
对视觉来说,深度是很重要的
intro
DCNN好,越深得到的特征越多,但是
第一页图:在传统模型厂,层数大了之后训练不动,误差越来越大
identify mapping:浅的网络如果够好,深的网络不应该变差,但是实际做不到,SGD找不到最优解
本篇文章提出了一个mapping的方法:深度残差网络中残差块
干什么:要学的是x,要在x的学习输出H(x)之上加层,加的时候不学第一次的输出H(x),而学F(x)=H(x)-x,即学到的东西和实际的x的残差,如此最后的输出是F(x)+x
相关工作
处理输入输出形状不同:1.在输入输出都添加额外的0,然他们对应2.投影,使用1X1的卷积
实现
把短边随机的裁到[256,480]大小,颜色调调
没有全连接所以没有dropout
实验
比较没有使用残差的18层和34层网络
在使用res前,18层的error要比34的小
使用了之后,34层的error比18的小,更好
在通道数大了之后添加bottomNet,对残差块的设计进行更高,先投影到64再卷积再投影回128、256。。。