最短路模板(Dijkstra && Floyd && Bellman-Ford && SPFA)

学习书籍博客若干,为自用模板,以下所有代码都可以在最短路版题HDU - 2544 最短路中AC。

Dijkstra(堆优化)

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>

#define MAXN 100+5
#define MAXE 10000+5
#define INF 0x3f3f3f3f

using namespace std;

struct Edge {
	int v, w;
	Edge() = default;
	Edge(int v, int w):v(v),w(w){}
};

struct Node {
	int id, dis;
	Node() = default;
	Node(int id, int dis):id(id),dis(dis){}
	bool operator < (const Node &b) const {
		return dis > b.dis;
	}
};

vector<Edge> E[MAXN];
int vis[MAXN];
int dis[MAXN];

inline void init() {
	memset(vis, 0, sizeof(vis));
	memset(dis, INF, sizeof(dis));
	for (auto &e : E) e.clear();
}

inline int djs(int src, int dst) {
	priority_queue<Node> q;
	dis[src] = 0;
	q.push(Node(src, dis[src]));
	while(!q.empty()) {
		Node u = q.top();
		q.pop();
		if(dis[u.id] != u.dis)
			continue;
		for (Edge &e : E[u.id]) {
			if(dis[e.v] > dis[u.id] + e.w) {
				dis[e.v] = dis[u.id] + e.w;
				q.push(Node(e.v, dis[e.v]));
			}
		}
	}
	return dis[dst];
}

int main()
{
	int n, m, a, b, c;
	while (~scanf("%d%d",&n,&m) && n+m) {
		init();

		for (int i=1; i<=m; ++i) {
            scanf("%d%d%d",&a,&b,&c);
            E[a].emplace_back(b, c);
            E[b].emplace_back(a, c);
		}
		printf("%d\n",djs(1, n));
	}
	return 0;
}

Floyd

#include <cstdio>
#include <cstring>
#include <algorithm>

#define MAXN 100+5
#define INF 0x3f3f3f3f

using namespace std;

int g[MAXN][MAXN];

inline void init()
{
	memset(g, INF, sizeof(g));
}

inline int Floyd(int src, int dst)
{
	// WARNING: Original graph is modified
	for(int k=1; k<=MAXN; ++k)
		for(int i=1; i<=MAXN; ++i)
			for(int j=1; j<=MAXN; ++j)
				g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
	return g[src][dst];
}

int main()
{
	int n,m,u,v,w; 
	while(~scanf("%d%d",&n,&m) && n+m)
	{
		init();
		
		while(m--) {
			scanf("%d%d%d",&u,&v,&w);
			g[u][v] = g[v][u] = w;
		}
		printf("%d\n",Floyd(1, n));
	}
	return 0;
}

Bellman-Ford

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>

#define MAXN 100+5
#define INF 0x3f3f3f3f

using namespace std;

struct Edge {
	int v;
	int w;
	Edge(int v, int w):v(v),w(w) {}
};

vector<Edge> e[MAXN];
int dis[MAXN];
int n,m; // nodenum && edgenum

inline void init()
{
	for (auto &v : e) v.clear();
	memset(dis, INF, sizeof(dis));
}

inline int BellmanFord(int src, int dst)
{
	dis[src] = 0;
	for (int i=0; i<n-1; ++i)
		for(int j=1; j<=n; ++j)
			for (auto &ee : e[j])
				dis[ee.v] = min(dis[ee.v], dis[j]+ee.w);
	/* 判负环
	for (int j=1; j<=n; ++j)
		for (auto &ee : e[j])
			if (dis[ee.v] > dis[j]+ee.w)
				return -INF;
	*/
	return dis[dst];
}

int main()
{
	int u,v,w;
	while(~scanf("%d%d",&n,&m) && n+m) {
		init();
		for(int i=1; i<=m; ++i) {
			scanf("%d%d%d",&u,&v,&w);
			e[u].emplace_back(v, w);
			e[v].emplace_back(u, w);
		}
		printf("%d\n",BellmanFord(1, n));
	}
	return 0;
}

SPFA

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>

#define MAXN 100+5
#define MAXE 10000+5
#define INF 0x3f3f3f3f

using namespace std;

int N,E;
int g[MAXN][MAXN];
bool vis[MAXN];
int dis[MAXN];
// int in[MAXN]; 
queue<int> q;

inline void init()
{
	memset(g, 0x3f, sizeof(g));
	memset(vis, 0, sizeof(vis));
	// memset(in, 0, sizeof(in));
	while(!q.empty()) q.pop();
}

inline int SPFA(int src, int dst)
{
	memset(dis, 0x3f, sizeof(dis));
	dis[src] = 0;
	vis[src] = true;
	
	q.push(src);
	while(!q.empty())
	{
		int cur = q.front();
		q.pop();
		vis[cur] = false;
		for(int i=1; i<=N; ++i)
		{
			if(dis[i] > dis[cur] + g[cur][i]) {
				dis[i] = dis[cur] + g[cur][i];
				if (!vis[i]) {
					q.push(i);
					vis[i] = true;
					/* 判负环
					++in[i];
					if(in[i] >= N)
						return -INF;
					*/
				}
			}
		}
	}
	return dis[dst]; 
}

int main()
{
	int u,v,w;
	while(~scanf("%d%d",&N,&E) && N+E)
	{
		init();
		for (int i=1; i<=E; ++i) {
			scanf("%d%d%d",&u,&v,&w);
			g[u][v] = g[v][u] = w;
		}
		printf("%d\n",SPFA(1,N));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值