数学分析一些证明

第三章-极限论

1. 序列极限的定义

对于数列 { x n } \{x_{n}\} {xn},若 ∀   ε > 0 , ∃   N > 0 ( N ∈ N ∗ ) , s . t .   n > N \forall~\varepsilon>0,\exist~N>0(N\in{\mathbb N^{*}}),s.t.~n>N  ε>0, N>0(NN),s.t. n>N时有
∣ x n − a ∣ &lt; ε \mid{x_{n}}-a\mid&lt;\varepsilon xna<ε则称
lim ⁡   x n = a ( x n → a ) \lim~x_{n}=a(x_{n}\rightarrow{a}) lim xn=a(xna)

2. 函数极限的两种定义

  • 对于任意以 a a a为其中一个聚点的集合 X   = { x } {\mathcal X~=\{x\}} X ={x} f ( x ) f(x) f(x) X \mathcal X X上有定义。从中任意选出数列 { x n } \{x_{n}\} {xn},若 x n → a x_{n}\rightarrow{a} xna x n ≠ a x_{n}\neq{a} xn̸=a 那么如果数列 { f ( x n ) } \{f(x_{n})\} {f(xn)}总有极限 A A A(有限或无限) (1) ,则 A A A f ( x ) f(x) f(x) x = a x=a x=a 处的极限,记作
    lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A xalimf(x)=A
  • a a a f ( x ) f(x) f(x)定义域的一个聚点,若 ∀   ε &gt; 0 , ∃   δ &gt; 0 , s . t .   ∣ x − a ∣ &lt; δ 时 有 \forall~\varepsilon&gt;0,\exist~\delta&gt;0,s.t.~\mid{x-a}\mid&lt;\delta时有  ε>0, δ>0,s.t. xa<δ
    ∣ f ( x ) − A ∣ &lt; ε \mid{f(x)}-A\mid&lt;\varepsilon f(x)A<ε则称
    lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A xalimf(x)=A
  • 函数极限不存在的定义略

3. 略

4. 极限的简单性质

  • 数列极限的性质
    1. 保序性:若 x n → a x_{n}\rightarrow{a} xna ( a &gt; p ) 或 ( a &lt; q ) (a&gt;p)或(a&lt;q) (a>p)(a<q),则 ∃ N ( N ∈ N ∗ ) , s . t .   n &gt; N \exist{N}(N\in{\mathbb N^{*}}),s.t.~n&gt;N N(NN),s.t. n>N时, ( x n &gt; p ) 或 ( x n &lt; q ) (x_{n}&gt;p)或(x_{n}&lt;q) (xn>p)(xn<q)
      证明:
      选取足够小的   ε ~\varepsilon  ε 使得
      ( a − ε &gt; p ) 或 ( a + ε &lt; q ) (a-\varepsilon&gt;p)或(a+\varepsilon&lt;q) (aε>p)(a+ε<q)这时由极限定义, ∃   N ( N ∈ N ∗ ) \exist~N(N\in \mathbb N^{*})  N(NN) n &gt; N n&gt;N n>N时有
      p &lt; a − ε &lt; x n &lt; a + ε &lt; q p&lt;a-\varepsilon&lt;x_{n}&lt;a+\varepsilon&lt;q p<aε<xn<a+ε<q所以 ( x n &gt; p ) 或 ( x n &lt; q ) (x_{n}&gt;p)或(x_{n}&lt;q) (xn>p)(xn<q)
    2. 保号性:取保序性p(q)为0的情况
    3. 保序性2:若 x n → a x_{n}\rightarrow{a} xna
      ( x n ≤ p ) 或 ( x n ≥ q ) (x_{n}\leq p)或(x_{n}\geq q) (xnp)(xnq)那么有
      ( a ≤ p ) 或 ( a ≥ q ) (a\leq p)或(a\geq q) (ap)(aq)
      证明:
      将上面保序性证明中的不等式改为
      q − ε ≤ x n − ε &lt; a &lt; x n + ε ≤ p + ε {q-\varepsilon}\leq x_{n}-\varepsilon&lt;a&lt;x_{n}+\varepsilon\leq{p+\varepsilon} qεxnε<a<xn+εp+ε由于 ε ∈ ( 0 , + ∞ ] \varepsilon\in(0,+\infin] ε(0,+]
      ( a ≤ p ) 或 ( a ≥ q ) (a\leq p)或(a\geq q) (ap)(aq)
    4. 唯一性
      证明:
      假设 ∃ a ≠ b \exist{a\neq{b}} a̸=b 且有 x n → a x_{n}\rightarrow{a} xna x n → b x_{n}\rightarrow{b} xnb,根据极限定义就会有 ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { a − ε &lt; x n &lt; a + ε b − ε &lt; x n &lt; b + ε \begin{cases}{a-\varepsilon&lt;x_{n}&lt;a+\varepsilon}\\{b-\varepsilon&lt;x_{n}&lt;b+\varepsilon}\end{cases} {aε<xn<a+εbε<xn<b+ε现在取 ε = ∣ a − b ∣ 2 \varepsilon=\frac{\mid{a-b}\mid}{2} ε=2ab,则 x n x_{n} xn不能同时满足上面两个式子,故 a = b a=b a=b
      5. 有界性:若数列有有限的极限,那么它是有界数列
      证明:
      假设它虽然有有限的极限,但是它是无界的,那么根据定义有:
      { ∀   ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 有 ∣ x n − a ∣ &lt; ε ∀ M &gt; 0 , ∃ n &gt; 0 ( n ∈ N ∗ ) , s . t . x n &gt; M \begin{cases}{\forall~\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时有\mid{x_{n}}-a\mid&lt;\varepsilon}\\{\forall{M&gt;0,\exist n&gt;0(n\in \mathbb N^{*}),s.t. x_{n}&gt;M}}\end{cases} { ε>0, N>0(NN),s.t. n>Nxna<εM>0,n>0(nN),s.t.xn>M现在取 M M M数列前 N N N以及 a + ε a+\varepsilon a+ε当中最大的一个,显然第二个式子无法成立,于是乎数列是有界的。
  • 函数极限的性质
    函数的性质证明,只要利用函数极限的第一种定义,取满足 ∣ x n − a ∣ &lt; δ \mid{x_{n}}-a\mid&lt;\delta xna<δ 的数列 { f ( x n ) } \{f(x_{n})\} {f(xn)}覆盖掉上面数列极限性质证明中的 x n x_{n} xn 即可,表述上面要添加对于充分接近于a的x,f(x)有……性质
    例子:
    保序性:若有 lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A limxaf(x)=A ,若 ( A &gt; p ) 或 ( A &lt; q ) (A&gt;p)或(A&lt;q) (A>p)(A<q) ,则对于充分接近于 a a a x x x ( f ( x ) &gt; p ) 或 ( f ( x ) &lt; q ) (f(x)&gt;p)或(f(x)&lt;q) (f(x)>p)(f(x)<q)
    证明:
    f ( x ) f(x) f(x) 定义域中任取趋于 a a a 的数列 x n x_{n} xn ,由函数极限定义 f ( x n ) f(x_{n}) f(xn) 的极限即为 f ( x ) f(x) f(x) a a a 点的极限,即:(1)
    lim ⁡ f ( x n ) = A \lim{f(x_{n})}=A limf(xn)=A
    选取足够小的   ε ~\varepsilon  ε 使得
    ( A − ε &gt; p ) 或 ( A + ε &lt; q ) (A-\varepsilon&gt;p)或(A+\varepsilon&lt;q) (Aε>p)(A+ε<q)这时由极限定义, ∃   N ( N ∈ N ∗ ) \exist~N(N\in\mathbb N^{*})  N(NN) n &gt; N n&gt;N n>N时有 p &lt; A − ε &lt; f ( x n ) &lt; A + ε &lt; q p&lt;A-\varepsilon&lt;f(x_{n})&lt;A+\varepsilon&lt;q p<Aε<f(xn)<A+ε<q所以 ( f ( x n ) &gt; p ) 或 ( f ( x n ) &lt; q ) (f(x_{n})&gt;p)或(f(x_{n})&lt;q) (f(xn)>p)(f(xn)<q),其中 x n x_{n} xn充分接近 a a a x x x( n &gt; N n&gt;N n>N 的项)
  • 在等式与不等式中取极限
    1. x n = y n x_{n}=y_{n} xn=yn,且两数列有有限的极限,则 lim ⁡ x n = lim ⁡ y n = c ( c ∈ R ) \lim{x_{n}}=\lim{y_{n}}=c(c\in \mathbb{R}) limxn=limyn=c(cR)
      证明略
    2. x n ≥ y n x_{n}\geq y_{n} xnyn,且两数列有有限的极限,则 lim ⁡ x n ≥ lim ⁡ y n \lim{x_{n}}\geq\lim{y_{n}} limxnlimyn
      证明:
      若有 x n → a x_{n}\rightarrow{a} xna y n → b y_{n}\rightarrow{b} ynb,根据极限定义就会有 ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { x n − ε &lt; a &lt; x n + ε y n − ε &lt; b &lt; y n + ε \begin{cases}{x_{n}-\varepsilon&lt;a&lt;x_{n}+\varepsilon}\\{y_{n}-\varepsilon&lt;b&lt;y_{n}+\varepsilon}\end{cases} {xnε<a<xn+εynε<b<yn+ε由于 x n ≥ y n x_{n}\geq y_{n} xnyn,于是有 a − b &gt; x n − y n − 2 ε ≥ − 2 ε a-b&gt; x_{n}-y_{n}-2\varepsilon\geq-2\varepsilon ab>xnyn2ε2ε,即 a − b &gt; − 2 ε a-b&gt;-2\varepsilon ab>2ε
      又因为 ε &gt; 0 \varepsilon&gt;0 ε>0,故 a − b ≥ 0 a-b\geq0 ab0 a ≥ b a\geq b ab
      (备注: x n &gt; y n x_{n}&gt;y_{n} xn>yn时同样有 lim ⁡ x n ≥ lim ⁡ y n \lim{x_{n}}\geq\lim{y_{n}} limxnlimyn,证明一样)
    3. 对于数列 x n , y n , z n x_{n},y_{n},z_{n} xn,yn,zn,如果有 x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn,且 lim ⁡ x n = lim ⁡ z n = a \lim{x_{n}}=\lim{z_{n}}=a limxn=limzn=a,则 lim ⁡ y n = a \lim{y_{n}=a} limyn=a
      证明:
      由极限的定义知, ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { a − ε &lt; x n &lt; a + ε a − ε &lt; z n &lt; a + ε \begin{cases}{a-\varepsilon&lt;x_{n}&lt;a+\varepsilon}\\{a-\varepsilon&lt;z_{n}&lt;a+\varepsilon}\end{cases} {aε<xn<a+εaε<zn<a+ε于是乎由命题 x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn可知,
      a − ε &lt; x n ≤ y n ≤ z n &lt; a + ε a-\varepsilon&lt;x_{n}\leq y_{n}\leq z_{n}&lt;a+\varepsilon aε<xnynzn<a+ε于是乎 lim ⁡ y n = a \lim{y_{n}=a} limyn=a

5. 单调有界原理:

如果数列是单调且有界的数列,它必定有有限的极限
证明:
取数列单调递增有上界的例子,单调递减有下界的情况类似
如果数列 x n {x_{n}} xn 是上有界数列,那么根据上确界的有关性质,该数列必定有有限的上确界,设为 a = sup ⁡ { x n } a=\sup\{x_{n}\} a=sup{xn},并且对于任意的 ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . x N &gt; a − ε \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.x_{N}&gt;a-\varepsilon ε>0N(NN)s.t.xN>aε
又因为 x n x_{n} xn 为单调递增数列,故 ∀ n &gt; N , x n &gt; a − ε \forall n&gt;N,x_{n}&gt;a-\varepsilon n>Nxn>aε,同时 x n ≤ a x_{n}\leq a xna,于是
∣ x n − a ∣ &lt; ε \mid x_{n}-a\mid&lt;\varepsilon xna<ε lim ⁡ x n = a = sup ⁡ { x n } \lim{x_{n}}=a=\sup\{x_{n}\} limxn=a=sup{xn}

6. e 的定义以及证明:

考虑数列:
x n = ( 1 + 1 n ) n x_{n}=(1+\frac1{n})^{n} xn=(1+n1)n根据二项式定理:(可以自己在纸上画一画,由于有点长就简略变化过程了)
x n = ∑ i = 0 n ( 1 i ! ∏ k = 0 i ( 1 − k n ) ) x_{n}=\sum_{i=0}^{n}(\frac1{i!}\prod_{k=0}^{i}(1-\frac{k}{n})) xn=i=0n(i!1k=0i(1nk))那么它的下一项:
x n + 1 = ∑ i = 0 n + 1 ( 1 i ! ∏ k = 0 i ( 1 − k n + 1 ) ) x_{n+1}=\sum_{i=0}^{n+1}(\frac1{i!}\prod_{k=0}^{i}(1-\frac{k}{n+1})) xn+1=i=0n+1(i!1k=0i(1n+1k))很明显大于 x n x_{n} xn,说明 x n x_{n} xn是单调递增数列,其次:
x n &lt; ∑ i = 0 n 1 i ! &lt; 1 + ∑ i = 0 n − 1 1 2 i = 1 + 1 − 1 2 n 1 − 1 2 &lt; 3 x_{n}&lt;\sum_{i=0}^{n}\frac{1}{i!}&lt;1+\sum_{i=0}^{n-1}\frac1{2^{i}}=1+\frac{1-\frac1{2^{n}}}{1-\frac1{2}}&lt;3 xn<i=0ni!1<1+i=0n12i1=1+12112n1<3数列 x n x_{n} xn 有上界,故 x n x_{n} xn 有有限的极限,用 e e e 来表示。

7. 波尔查诺 - 魏尔斯特拉斯引理(收敛定理):

任何有界数列,总可以从中选出收敛于有限极限的子序列
证明:
由命题,设 x n ∈ [ a 0 , b 0 ] x_{n}\in[a_{0},b_{0}] xn[a0,b0],把区间分成两半,至少有其中一半有无穷个元素(若不然就只有有限个 x n x_{n} xn),取这一半区间为 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1](若两半都有无穷个元素则任取一半),不断如此,可以构成两个数列: a n , b n a_{n},b_{n} an,bn使得有无穷个 x n ∈ [ a n , b n ] x_{n}\in[a_{n},b_{n}] xn[an,bn],又易知这个区间的长度为
∣ b n − a n ∣ = b 0 − a 0 2 n \mid b_{n}-a_{n}\mid =\frac{b_{0}-a_{0}}{2^{n}} bnan=2nb0a0随着 n n n 的增大而减短,于是 ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . b 0 − a 0 2 N &lt; ε \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.\frac{b_{0}-a_{0}}{2^{N}}&lt;\varepsilon ε>0N(NN)s.t.2Nb0a0<ε,当 n &gt; N n&gt;N n>N 时,有:
∣ b n − a n ∣ &lt; ε \mid b_{n}-a_{n}\mid &lt;\varepsilon bnan<ε lim ⁡ ( b n − a n ) = 0 ⇒ lim ⁡ a n = lim ⁡ b n = c ( c ∈ [ a 0 , b 0 ] ) \lim({b_{n}-a_{n})=0\Rightarrow\lim{a_{n}}=\lim{b_{n}}}=c(c\in[a_{0},b_{0}]) lim(bnan)=0liman=limbn=c(c[a0,b0])于是因为 a n ≤ x n ≤ b n a_{n}\leq x_{n}\leq b_{n} anxnbn,由夹逼准则知:
lim ⁡ x n = c ( c ∈ [ a 0 , b n ] ) \lim{x_{n}}=c(c\in[a_{0},b_{n}]) limxn=c(c[a0,bn])

8. 柯西收敛准则

  • 数列极限存在准则: lim ⁡ x n = a ( a ∈ R ) \lim x_{n}=a(a\in\mathbb R) limxn=a(aR) ⇔ \Leftrightarrow ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N ε>0N(NN)s.t.n>Nn>N时,不等式
    ∣ x n − x n ′ ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid&lt;\varepsilon xnxn<ε恒成立
    证明:
    1. 必要性 ⇒ \Rightarrow
      由极限定义: ∀ ε 2 &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \frac\varepsilon{2}&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N 2ε>0N(NN)s.t.n>Nn>N
      { ∣ x n − a ∣ &lt; ε 2 ∣ x n ′ − a ∣ &lt; ε 2 \begin{cases}{\mid x_{n}-a\mid&lt;\frac\varepsilon2}\\{\mid x_{n^{\prime}}-a\mid&lt;\frac\varepsilon2}\end{cases} {xna<2εxna<2ε于是有:
      ∣ x n − x n ′ ∣ ≤ ∣ x n − a ∣ + ∣ x n ′ − a ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid\leq\mid x_{n}-a\mid+\mid x_{n^{\prime}}-a\mid&lt;\varepsilon xnxnxna+xna<ε
    2. 充分性 ⇐ \Leftarrow
      由题有: ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N ε>0N(NN)s.t.n>Nn>N有:
      ∣ x n − x n ′ ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid&lt;\varepsilon xnxn<ε固定 n ′ , ε n^{\prime},\varepsilon nε 不变,有:
      x n ′ − ε &lt; x n &lt; x n ′ + ε x_{n^{\prime}}-\varepsilon&lt;x_{n}&lt;x_{n^{\prime}}+\varepsilon xnε<xn<xn+ε M M M前n项 x n x_{n} xn x n ′ + ε x_{n^{\prime}}+\varepsilon xn+ε 当中最大的一个,取 m m m前n项 x n x_{n} xn x n ′ − ε x_{n^{\prime}}-\varepsilon xnε 当中最小的一个,很明显有 x n ∈ [ m , M ] x_{n}\in[m,M] xn[m,M],根据收敛原理,可以从中取出一个子序列 { x n k } \{x_{n_{k}}\} {xnk}使得:
      lim ⁡ x n k = c ( c ∈ [ m , M ] ) \lim{x_{n_{k}}}=c(c\in[m,M]) limxnk=c(c[m,M])这时,由上面固定的 ε \varepsilon ε ∃ K ( K ∈ N ∗ ) \exist K(K\in\mathbb N^{*}) K(KN) s . t . k &gt; K s.t. k&gt;K s.t.k>K n k &gt; N n_{k}&gt;N nk>N 时,有:
      ∣ x n k − c ∣ &lt; ε \mid{x_{n_{k}}-c}\mid&lt;\varepsilon xnkc<ε由命题知又有:
      ∣ x n − x n k ∣ &lt; ε \mid x_{n}-x_{n_{k}}\mid&lt;\varepsilon xnxnk<ε结合两不等式有:
      ∣ x n − c ∣ &lt; ∣ x n − x n k ∣ + ∣ x n k − c ∣ &lt; 2 ε \mid x_{n}-c\mid&lt;\mid x_{n}-x_{n_{k}}\mid+\mid{x_{n_{k}}-c}\mid&lt;2\varepsilon xnc<xnxnk+xnkc<2ε
  • 函数极限存在准则: lim ⁡ x → a f ( x ) = A ( A ∈ R ) \lim_{x\rightarrow a} f(x)=A(A\in\mathbb R) limxaf(x)=A(AR) ⇔ \Leftrightarrow ∀ ε &gt; 0 , ∃ δ &gt; 0 , s . t . ∣ x − a ∣ &lt; δ 且 ∣ x ′ − a ∣ &lt; δ \forall \varepsilon&gt;0,\exist \delta&gt;0,s.t.\mid x-a\mid&lt;\delta且\mid x^{\prime}-a\mid&lt;\delta ε>0δ>0s.t.xa<δxa<δ时,不等式
    ∣ f ( x ) − f ( x ′ ) ∣ &lt; ε \mid f(x)-f(x^{\prime})\mid&lt;\varepsilon f(x)f(x)<ε恒成立。
    证明:
    同样可以用“数列的语言”(函数极限的第一种定义方式)来将函数的极限转化为数列的极限,转化需要补充的句子:
    { x n } 是 从 f ( x ) 定 义 域 中 选 出 的 趋 于 a 的 数 列 , ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , 对 于 数 列 { f ( x n ) } 有 … … \{x_{n}\}是从f(x)定义域中选出的趋于a的数列,\forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),对于数列\{f(x_{n})\}有…… {xn}f(x)aε>0N(NN){f(xn)}(1)
    ( x n x_{n} xn 本身即是可以任选的,具体可以看上面极限的简单性质部分中函数的极限的例子部分)

第四章-函数的连续性(与间断点)

1. 连续性的定义以及初等函数连续性的证明

  • 连续性定义
    x 0 x_{0} x0 是函数 f ( x ) f(x) f(x) 定义域中的一点,那么如果有:
    lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}) xx0limf(x)=f(x0)那么则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0上是连续的,否则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是间断的
    相对的,如果 f ( x 0 + 0 ) = f ( x 0 ) f(x_{0}+0)=f(x_{0}) f(x0+0)=f(x0),则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是右连续的,如果 f ( x 0 − 0 ) = f ( x 0 ) f(x_{0}-0)=f(x_{0}) f(x00)=f(x0),则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是左连续的。
    易知:
    f ( x ) 是 连 续 的 ⇔ f ( x ) 既 是 左 连 续 的 又 是 右 连 续 的 f(x)是连续的\Leftrightarrow f(x)既是左连续的又是右连续的 f(x)f(x)
  • 单调函数的连续性条件:若 f ( x ) f(x) f(x) 是定义在 X \mathcal X X 上的单调函数,若 f ( x ) f(x) f(x) 的值域 R ( f ) ∈ Y R(f)\in\mathcal Y R(f)Y,并把 Y \mathcal Y Y 全部填满,那么 f ( x ) f(x) f(x) X \mathcal X X 上是连续的。
    证明:
    假设 f ( x ) f(x) f(x) 是在 X \mathcal X X 上的增函数(减函数同理即可)
    分别考虑 X \mathcal X X 中的每个 x x x右连续性左连续性便可以同理得出。
    x 0 ∈ X x_{0}\in\mathcal X x0X x 0 ≠ sup ⁡ ( x ) x_{0}\neq\sup(x) x0̸=sup(x),则有 y 0 = f ( x 0 ) ∈ Y y_{0}=f(x_{0})\in\mathcal Y y0=f(x0)Y
    ε &gt; 0 \varepsilon&gt;0 ε>0 并且 y 1 = y 0 + ε ∈ Y y_{1}=y_{0}+\varepsilon\in\mathcal Y y1=y0+εY(因为 x 0 ≠ sup ⁡ ( x ) x_{0}\neq\sup(x) x0̸=sup(x) f ( x ) f(x) f(x) 单调递增),由命题,可找到一个 x 1 ∈ X x_{1}\in\mathcal X x1X 并且 y 1 = f ( x 1 ) y_{1}=f(x_{1}) y1=f(x1)
    由于 f ( x ) f(x) f(x) 是增函数,于是有 x 1 &gt; x 0 x_{1}&gt;x_{0} x1>x0,令 δ = x 1 − x 0 \delta=x_{1}-x_{0} δ=x1x0 ,此时对于 x 0 &lt; x &lt; x 0 + δ = x 1 x_{0}&lt;x&lt;x_{0}+\delta=x_{1} x0<x<x0+δ=x1,则有:
    f ( x 0 ) &lt; f ( x ) &lt; f ( x 1 ) ⇔ 0 &lt; f ( x ) − f ( x 0 ) &lt; ε f(x_{0})&lt;f(x)&lt;f(x_{1})\Leftrightarrow 0&lt;f(x)-f(x_{0})&lt;\varepsilon f(x0)<f(x)<f(x1)0<f(x)f(x0)<ε于是:
    lim ⁡ x → x 0 + 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}+0}f(x)=f(x_{0}) xx0+0limf(x)=f(x0) f ( x ) f(x) f(x) X \mathcal X X 上是右连续的,同理也是左连续的,于是乎 f ( x ) f(x) f(x) X \mathcal X X 上是连续的。
    f ( x ) f(x) f(x) 为减函数时同理。
  • 连续函数的算术运算:若 f ( x ) , g ( x ) f(x),g(x) f(x)g(x) 时定义在同一区间 X \mathcal X X 上的连续函数,那么以下函数在这一区间 X \mathcal X X 上(除了 g ( x ) = 0 g(x)=0 g(x)=0 的位置)也是连续的:
    f ( x ) ± g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) g ( x ) f(x)\pm g(x),f(x)\cdot g(x),\frac{f(x)}{g(x)} f(x)±g(x)f(x)g(x)g(x)f(x)证明略
  • 复合函数的连续性:若 f ( x ) f(x) f(x) 是定义在 X \mathcal X X 上的函数,值域 R ( f ) ∈ Y R(f)\in\mathcal Y R(f)Y,而 g ( y ) g(y) g(y) 是定义在 Y \mathcal Y Y 上的函数。若 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上连续, g ( y ) g(y) g(y) y = y 0 = f ( x 0 ) y=y_{0}=f(x_{0}) y=y0=f(x0) 点上也连续,那么函数 g ( f ( x ) ) g(f(x)) g(f(x)) x = x 0 x=x_{0} x=x0 点上也是连续的。
    证明:
    由命题可知 ∀ ε &gt; 0 , ∃ δ y &gt; 0 , s . t . ∣ y − y 0 ∣ &lt; δ y \forall \varepsilon&gt;0,\exist\delta_{y}&gt;0,s.t.\mid y-y_{0}\mid&lt;\delta_{y} ε>0,δy>0,s.t.yy0<δy时:
    ∣ g ( y ) − g ( y 0 ) ∣ &lt; ε \mid g(y)-g(y_{0})\mid&lt;\varepsilon g(y)g(y0)<ε然而又对于这样的 δ y , ∃ δ x &gt; 0 , s . t . ∣ x − x 0 ∣ &lt; δ y \delta_{y},\exist \delta_{x}&gt;0,s.t. \mid x-x_{0}\mid&lt;\delta_{y} δy,δx>0,s.t.xx0<δy时:
    ∣ f ( x ) − f ( x 0 ) ∣ &lt; δ y ⇔ ∣ y − y 0 ∣ &lt; δ y \mid f(x)-f(x_{0})\mid&lt;\delta_{y}\Leftrightarrow \mid y-y_{0}\mid&lt;\delta_{y} f(x)f(x0)<δyyy0<δy于是乎 ∀ ε &gt; 0 , ∃ δ x &gt; 0 , s . t . ∣ x − x 0 ∣ &lt; δ x \forall \varepsilon&gt;0,\exist\delta_{x}&gt;0,s.t.\mid x-x_{0}\mid&lt;\delta_{x} ε>0,δx>0,s.t.xx0<δx时:
    ∣ g ( f ( x ) ) − g ( f ( x 0 ) ) ∣ &lt; ε \mid g(f(x))-g(f(x_{0}))\mid&lt;\varepsilon g(f(x))g(f(x0))<ε所以 g ( f ( x ) ) g(f(x)) g(f(x)) x = x 0 x=x_{0} x=x0 点上连续。
  • 初等函数的连续性
    证明:
    1. 有理整函数与有理分式函数:
    2. 指数函数:
      指数函数为单调函数(单调增或减),同时它的值域 R ( f ) ∈ ( 0 , + ∞ ) R(f)\in(0,+\infin) R(f)(0,+) 总成立,并且填满了整个区间 ( 0 , + ∞ ) (0,+\infin) (0,+) (因为对于每个 y 0 ∈ ( 0 , + ∞ ) y_{0}\in(0,+\infin) y0(0,+) 都能找到一个 x 0 x_{0} x0 使得 f ( x 0 ) = y 0 f(x_{0})=y_{0} f(x0)=y0 ),于是根据上面的单调函数连续性条件知指数函数是连续函数。
    3. 对数函数:
      它与指数函数同理
    4. 幂函数:
      y = x μ ( μ ≠ 0 ) ( x ∈ ( 0 , + ∞ ) ) y=x^{\mu}(\mu\neq0)(x\in(0,+\infin)) y=xμ(μ̸=0)(x(0,+)),当 μ ∈ ( 0 , + ∞ ) \mu\in (0,+\infin) μ(0,+) 时, y y y 单增且填满 ( 0 , + ∞ ) (0,+\infin) (0,+),当 μ ∈ ( − ∞ , 0 ) \mu\in (-\infin,0) μ(,0) y y y 单减且填满 ( 0 , + ∞ ) (0,+\infin) (0,+),幂函数连续。
      ( x ≤ 0 ) (x\leq0) (x0) 情况略。
    5. 三角函数:
      对于 y = sin ⁡ x y=\sin x y=sinx 把他分成无穷个区间 [ k π − π 2 , k π + π 2 ] [k\pi-\frac\pi2,k\pi+\frac\pi2] [kπ2π,kπ+2π] y y y 在其中每一个区间都是单调且充满的,所以 y = sin ⁡ x y=\sin x y=sinx 在所有区间都是连续的。同理 y = cos ⁡ x y=\cos x y=cosx 也是连续的。
      再结合连续函数的算术法则,在分母不为0的点,下面三角函数也是连续的:
      tan ⁡ x = sin ⁡ x cos ⁡ x , sec ⁡ x = 1 cos ⁡ x , cot ⁡ x = cos ⁡ x sin ⁡ x , csc ⁡ x = 1 sin ⁡ x \tan x=\frac{\sin x}{\cos x},\sec x=\frac1{\cos x},\cot x=\frac{\cos x}{\sin x},\csc x=\frac1{\sin x} tanx=cosxsinxsecx=cosx1cotx=sinxcosxcscx=sinx1
    6. 反三角函数:
      四个反三角函数 ( arcsin ⁡ x , arccos ⁡ x , arctan ⁡ x , a r c c o t   x ) (\arcsin x,\arccos x,\arctan x,arccot~x) (arcsinx,arccosx,arctanx,arccot x) 中,每一个都是在其定义域内单调递增或递减,同时填满其值域所在的区间,所以这四个反三角函数也是连续的。

2. 波尔查诺 - 柯西第一定理(零点定理(2)):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,又在这个区间两端是异号的,那么一定 ∃ c ∈ [ a 0 , b 0 ] , s . t . f ( c ) = 0 \exist c\in[a_{0},b_{0}],s.t. f(c)=0 c[a0,b0]s.t.f(c)=0
证明:
找这个区间的中点 x = a 0 + b 0 2 x=\frac{a_{0}+b_{0}}2 x=2a0+b0 f ( x ) f(x) f(x)有三种情况:
{ f ( x ) &gt; 0 , f ( x ) = 0 , f ( x ) &lt; 0. \begin{cases}f(x)&gt;0,\\f(x)=0,\\f(x)&lt;0.\end{cases} f(x)>0,f(x)=0,f(x)<0.若为中间的情况,则这点就是所要求的 c c c否则,这一点的函数值必定与两端的其中一端的函数值异号,令这一区间为 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1] ,一直重复以上过程,若始终没有遇到 f ( a n + b n 2 ) = 0 f(\frac{a_{n}+b_{n}}2)=0 f(2an+bn)=0的情况,那么这时候这个区间的长度为:
∣ b n − a n ∣ = b 0 − a 0 2 n \mid b_{n}-a_{n}\mid =\frac{b_{0}-a_{0}}{2^{n}} bnan=2nb0a0随着 n n n 的增大而减短,于是 ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . b 0 − a 0 2 N &lt; ε \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.\frac{b_{0}-a_{0}}{2^{N}}&lt;\varepsilon ε>0N(NN)s.t.2Nb0a0<ε,当 n &gt; N n&gt;N n>N 时,有:
∣ b n − a n ∣ &lt; ε \mid b_{n}-a_{n}\mid &lt;\varepsilon bnan<ε lim ⁡ ( b n − a n ) = 0 ⇒ lim ⁡ a n = lim ⁡ b n = c ( c ∈ [ a 0 , b 0 ] ) \lim({b_{n}-a_{n})=0\Rightarrow\lim{a_{n}}=\lim{b_{n}}}=c(c\in[a_{0},b_{0}]) lim(bnan)=0liman=limbn=c(c[a0,b0])根据函数连续性的特点以及数列极限的简单性质(保序性),有:
f ( c ) = lim ⁡ a n ≤ 0 , f ( c ) = lim ⁡ b n ≥ 0 f(c)=\lim a_{n}\leq0,f(c)=\lim b_{n}\geq0 f(c)=liman0,f(c)=limbn0于是乎:
f ( c ) = 0 f(c)=0 f(c)=0

3. 魏尔斯特拉斯第一定理(有界性定理):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,则它是有界的。
证明:
若不然,假设无上界,那么在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 中存在一个数列 x n x_{n} xn ∀ E &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 时 , f ( x n ) &gt; E \forall E &gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N时,f(x_{n})&gt;E E>0N(NN)s.t.n>Nf(xn)>E,即:
lim ⁡ f ( x n ) = + ∞ \lim f(x_{n})=+\infin limf(xn)=+然而由波尔查诺-魏尔斯特拉斯引理(收敛原理),可以从 x n x_{n} xn 中选出一个子序列 x n k x_{n_{k}} xnk 使得:
lim ⁡ x n k = x 0 ∈ [ a 0 , b 0 ] \lim x_{n_{k}}=x_{0}\in [a_{0},b_{0}] limxnk=x0[a0,b0]根据连续性定义:
lim ⁡ f ( x n k ) = f ( x 0 ) \lim f(x_{n_{k}})=f(x_{0}) limf(xnk)=f(x0)很明显与上式矛盾,故 f ( x ) f(x) f(x) 有上界,同理也有下界,所以 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 是有界的。

4. 魏尔斯特拉斯第二定理(最值定理):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,则它是有界的,且必定达到它的上确界和下确界。
证明:
M = sup ⁡ { f ( x ) } M=\sup\{f(x)\} M=sup{f(x)} ,利用反证法:假设 ∀ x ∈ [ a 0 , b 0 ] , f ( x ) &lt; M \forall x\in[a_{0},b_{0}],f(x)&lt;M x[a0,b0]f(x)<M,这时构造辅助函数:
g ( x ) = 1 M − f ( x ) g(x)=\frac1{M-f(x)} g(x)=Mf(x)1由假设知这里分母不为0,所以 g ( x ) g(x) g(x) 是连续函数,由魏尔斯特拉斯第一定理 g ( x ) g(x) g(x) 是有界函数,设其上界为 μ &gt; 0 \mu&gt;0 μ>0 ,有 g ( x ) ≤ μ g(x)\leq \mu g(x)μ 于是:
f ( x ) ≤ M − 1 μ f(x)\leq M-\frac1{\mu} f(x)Mμ1于是乎 M − 1 μ M-\frac1{\mu} Mμ1 也是 f ( x ) f(x) f(x) 的一个上界,但这个上界小于给定的上确界 M M M,故矛盾。
所以至少 ∃ x 0 ∈ [ a 0 , b 0 ] , s . t .   f ( x 0 ) = M \exist x_{0}\in [a_{0},b_{0}],s.t.~f(x_{0})=M x0[a0,b0]s.t. f(x0)=M,即 f ( x ) f(x) f(x) 可以达到它的上确界。

第五章-一元函数的微分法

1. 反函数求导法则 :

y = f ( x ) y=f(x) y=f(x) 存在它的反函数 x = g ( y ) x=g(y) x=g(y) ,且 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上有有限且不为0的导数 f ′ ( x 0 ) f^{\prime}(x_{0}) f(x0) 那么它的反函数在对应的点 y = y 0 = f ( x 0 ) y=y_{0}=f(x_{0}) y=y0=f(x0) 上也有导数存在且等于 g ′ ( y 0 ) = 1 f ′ ( x 0 ) g^{\prime}(y_{0})=\frac1{f^{\prime}(x_{0})} g(y0)=f(x0)1
证明
根据导数的定义:
g ′ ( y 0 ) = lim ⁡ y → y 0 g ( y ) − g ( y 0 ) y − y 0 = lim ⁡ x → x 0 1 f ( x ) − f ( x 0 ) x − x 0 = 1 f ′ ( x 0 ) g^{\prime}(y_{0})=\lim_{y\rightarrow y_{0}}\frac{g(y)-g(y_{0})}{y-y_{0}}=\lim_{x\rightarrow x_{0}}\frac{1}{\frac{f(x)-f(x_{0})}{x-x_{0}}}=\frac{1}{f^{\prime}(x_{0})} g(y0)=yy0limyy0g(y)g(y0)=xx0limxx0f(x)f(x0)1=f(x0)1

2. 复合函数的求导法则:

y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_{0} u=u0 点有有限导数 f ′ ( u 0 ) f^{\prime}(u_{0}) f(u0) u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_{0} x=x0 点有有限导数 g ′ ( x 0 ) g^{\prime}(x_{0}) g(x0),那么复合函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) x = x 0 x=x_{0} x=x0 点也有导数,表示为:
( f ∘ g ) ′ ( x ) = f ′ ( u 0 ) ⋅ g ′ ( x 0 ) (f\circ g)^{\prime}(x)=f^{\prime}(u_{0})\cdot g^{\prime}(x_{0}) (fg)(x)=f(u0)g(x0)或者用莱布尼茨表示为更加形象的式子:

d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=dudydxdu证明:
由导数的定义知:
f ′ ( u ) = lim ⁡ Δ u → 0 Δ y Δ u ⇒ Δ y = f ′ ( u ) ⋅ Δ u + α ⋅ Δ u f^{\prime}(u)=\lim_{\Delta u\rightarrow0}\frac{\Delta y}{\Delta u}\Rightarrow\Delta y=f^{\prime}(u)\cdot\Delta u+\alpha\cdot \Delta u f(u)=Δu0limΔuΔyΔy=f(u)Δu+αΔu Δ y Δ x = f ′ ( u ) Δ u Δ x + α Δ u Δ x \frac{\Delta y}{\Delta x}=f^{\prime}(u)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x} ΔxΔy=f(u)ΔxΔu+αΔxΔu两边取极限 Δ x → 0 \Delta x\rightarrow 0 Δx0 得:
( f ∘ g ) ′ ( x ) = f ′ ( u 0 ) ⋅ g ′ ( x 0 ) (f\circ g)^{\prime}(x)=f^{\prime}(u_{0})\cdot g^{\prime}(x_{0}) (fg)(x)=f(u0)g(x0)( α ⋅ g ′ ( x ) = 0 \alpha\cdot g^{\prime}(x)=0 αg(x)=0 显然成立)

3. 可微性与导数存在的关系定理:

在一元函数中,可微 ⇔ \Leftrightarrow 可导
证明:

  • ⇐ \Leftarrow
    f ( x ) f(x) f(x) 可导,则有:
    y ′ = lim ⁡ Δ x → 0 Δ y Δ x ⇒ Δ y = y ′ Δ x + α Δ x = y ′ Δ x + o ( Δ x ) y^{\prime}=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\Rightarrow\Delta y=y^{\prime}\Delta x+\alpha\Delta x=y^{\prime}\Delta x+o(\Delta x) y=Δx0limΔxΔyΔy=yΔx+αΔx=yΔx+o(Δx)于是乎根据函数可微的定义:
    d y = y ′ Δ x dy=y^{\prime}\Delta x dy=yΔx
  • ⇒ \Rightarrow
    f ( x ) f(x) f(x) 可微,则有:
    Δ y Δ x = A + o ( Δ x ) Δ x \frac{\Delta y}{\Delta x}=A+\frac{o(\Delta x)}{\Delta x} ΔxΔy=A+Δxo(Δx)两边取极限 Δ x → 0 \Delta x\rightarrow 0 Δx0 得:
    y ′ = lim ⁡ Δ x → 0 Δ y Δ x = A y^{\prime}=\lim_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}=A y=Δx0limΔxΔy=A

4. 一阶微分的形式不变性:

即使用新的自变量 (例如 t t t )取代替原来得自变量(例如 x x x ),比如将 x = g ( t ) x=g(t) x=g(t) 带入原来的函数 y = f ( x ) y=f(x) y=f(x) ,函数 y = f ( x ) y=f(x) y=f(x) y = f ( g ( t ) ) y=f(g(t)) y=f(g(t)) 的一阶微分有相同的形式。
证明
在自变量不变的情况下, y = f ( x ) y=f(x) y=f(x) 的微分表示为:
d y = y x ′ ⋅ d x dy=y^{\prime}_{x}\cdot dx dy=yxdx对于变换自变量的函数 x = g ( t ) x=g(t) x=g(t) 的微分可表示为:
d x = x t ′ ⋅ d t dx=x^{\prime}_{t}\cdot dt dx=xtdt于是乎原来函数的微分可表示为:
d y = y x ′ x t ′ ⋅ d t dy=y^{\prime}_{x}x^{\prime}_{t}\cdot dt dy=yxxtdt根据复合函数的求导法则:
y t ′ = y x ′ ⋅ x t ′ y^{\prime}_{t}=y^{\prime}_{x}\cdot x^{\prime}_{t} yt=yxxt于是乎原来函数的微分又可以表示为:
d y = y t ′ ⋅ d t dy=y^{\prime}_{t}\cdot dt dy=ytdt

第六章-微分学的基本定理

1. 费马定理:

若函数 f ( x ) f(x) f(x) 在其定义域内的某一内点(不在区间两端) x = x 0 x=x_{0} x=x0 上取得最值,那么 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0
证明:
假设 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上取得最大值,那么有:
f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}(x_{0})=\lim_{x\rightarrow x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} f(x0)=xx0limxx0f(x)f(x0)然而右式分式上的分子始终小于等于0,当 x &lt; x 0 x&lt;x_{0} x<x0 时:
f ( x ) − f ( x 0 ) x − x 0 ≥ 0 \frac{f(x)-f(x_{0})}{x-x_{0}}\geq0 xx0f(x)f(x0)0 x &gt; x 0 x&gt;x_{0} x>x0 时:
f ( x ) − f ( x 0 ) x − x 0 ≤ 0 \frac{f(x)-f(x_{0})}{x-x_{0}}\leq0 xx0f(x)f(x0)0于是,根据函数极限的保号性
f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0最小值同理

2. 罗尔定理:

f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),那么 ∃ x 0 ∈ ( a , b ) , s . t . f ′ ( x 0 ) = 0 \exist x_{0}\in(a,b),s.t. f^{\prime}(x_{0})=0 x0(a,b)s.t.f(x0)=0
证明
根据魏尔斯特拉斯第二定理(最值定理),函数在区间 [ a , b ] [a,b] [a,b] 上可以取到最大值 M M M 和最小值 m m m

  1. m = M m=M m=M 时:
    很显然 f ( x ) = C ( C ∈ R ) f(x)=C(C\in \mathbb R) f(x)=C(CR) 恒成立,故 f ′ ( x ) = 0 f^{\prime}(x)=0 f(x)=0 x ∈ ( a , b ) x\in (a,b) x(a,b) 上处处成立。
  2. m &lt; M m&lt;M m<M 时:
    f ( x ) f(x) f(x) 不可能在两个端点上分别取到最大值和最小值(因为 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ),所以至少有一点 x 0 ∈ ( a , b ) x_{0}\in(a,b) x0(a,b),使得 f ( x 0 ) = m f(x_{0})=m f(x0)=m f ( x 0 ) = M f(x_{0})=M f(x0)=M ,再根据上面的费马中值定理 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0

3. 拉格朗日定理(有限增量定理):

f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,那么 ∃ x 0 ∈ ( a , b ) \exist x_{0}\in(a,b) x0(a,b) ,使得: f ( b ) − f ( a ) b − a = f ′ ( x 0 ) \frac{f(b)-f(a)}{b-a}=f^{\prime}(x_{0}) baf(b)f(a)=f(x0)
证明:
证明的关键在于构造符合罗尔定理的函数,即构造 F ( f ( x ) ) F(f(x)) F(f(x)) 使得:
F ( f ( a ) ) = F ( f ( b ) ) F(f(a))=F(f(b)) F(f(a))=F(f(b))符合这样条件的函数有很多种,我们取最简单的:
F ( f ( x ) ) = f ( x ) − k x F(f(x))=f(x)-kx F(f(x))=f(x)kx很明显,由上面等式我们可以得出:
k = f ( b ) − f ( a ) b − a k=\frac{f(b)-f(a)}{b-a} k=baf(b)f(a)于是根据罗尔定理 ∃ x 0 ∈ ( a , b ) , s . t .   ( F ( f ( x 0 ) ) ) ′ = 0 \exist x_{0}\in(a,b),s.t.~(F(f(x_{0})))^{\prime}=0 x0(a,b)s.t. (F(f(x0)))=0,即:
f ′ ( x 0 ) = k = f ( b ) − f ( a ) b − a f^{\prime}(x_{0})=k=\frac{f(b)-f(a)}{b-a} f(x0)=k=baf(b)f(a)

4. 柯西定理(有限增量公式的推广):

若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,在区间 ( a , b ) (a,b) (a,b) g ′ ( x ) ≠ 0 g^{\prime}(x)\neq0 g(x)̸=0,那么 ∃ x 0 ∈ ( a , b ) \exist x_{0}\in(a,b) x0(a,b) ,使得: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})} g(b)g(a)f(b)f(a)=g(x0)f(x0)
证明:
首先我们利用反证法证明 g ( b ) ≠ g ( a ) g(b)\neq g(a) g(b)̸=g(a)
g ( b ) = g ( a ) g(b)=g(a) g(b)=g(a) ,由罗尔定理 ∃ x 1 ∈ ( a , b ) , s . t .   g ′ ( x 1 ) = 0 \exist x_{1}\in (a,b),s.t.~g^{\prime}(x_{1})=0 x1(a,b)s.t. g(x1)=0 与原定理假设相悖,于是乎 g ( b ) ≠ g ( a ) g(b)\neq g(a) g(b)̸=g(a)
然后类似于拉格朗日定理,构造一个包含 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的函数 F ( x ) F(x) F(x) 使得: F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b)同样的我们选取最简单的形式:
F ( x ) = f ( x ) − k ⋅ g ( x ) F(x)=f(x)-k\cdot g(x) F(x)=f(x)kg(x)根据上面等式我们可以求出:
k = f ( b ) − f ( a ) g ( b ) − g ( a ) k=\frac{f(b)-f(a)}{g(b)-g(a)} k=g(b)g(a)f(b)f(a)于是乎,再根据罗尔定义, ∃ x 0 ∈ ( a , b ) , s . t . F ′ ( x 0 ) = 0 \exist x_{0}\in (a,b),s.t. F^{\prime}(x_0)=0 x0(a,b)s.t.F(x0)=0,展开即可得:
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})} g(b)g(a)f(b)f(a)=g(x0)f(x0)

5. 初等函数的泰勒公式:

x = 0 x=0 x=0 点上的泰勒展开公式为:
f ( x ) = ∑ i = 0 n f ( i ) ( x ) ⋅ x i i ! + r n ( x ) f(x)=\sum_{i=0}^{n}\frac{f^{(i)}(x)\cdot x^{i}}{i!}+r_{n}(x) f(x)=i=0ni!f(i)(x)xi+rn(x)证明初等函数的泰勒展开就是在求初等函数在 x = 0 x=0 x=0 点上的 n n n 阶导数值,无太多技巧性,所以这里证明从略。

  1. f ( x ) = e x f(x)=e^{x} f(x)=ex
  2. f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx
  3. f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx
  4. f ( x ) = ( 1 + x ) μ f(x)=(1+x)^{\mu} f(x)=(1+x)μ
  5. f ( x ) = ln ⁡ ( 1 + x ) f(x)=\ln(1+x) f(x)=ln(1+x)
  6. f ( x ) = arctan ⁡ ( x ) f(x)=\arctan(x) f(x)=arctan(x)

第七章-应用导数来研究函数

1. 函数为单调的条件

若函数 f ( x ) f(x) f(x) 定义在区间 X \mathcal X X 上,且在其内有有限的导数 f ′ ( x ) f^{\prime}(x) f(x),并且在其两端(如果两端在 X \mathcal X X 上0)连续,那么 f ( x ) f(x) f(x) X \mathcal X X 上狭义单调递增(递减)的充分条件为:
f ′ ( x ) &gt; 0 ( &lt; 0 ) f^{\prime}(x)&gt;0 (&lt;0) f(x)>0(<0)证明
假设 f ( x ) f(x) f(x) 单调递增,单调递减的部分同理。
X \mathcal X X 上任取两个数 x ′ , x ′ ′ x^{\prime},x^{\prime\prime} x,x,且 x ′ &lt; x ′ ′ x^{\prime}&lt;x^{\prime\prime} x<x,在区间 [ x ′ , x ′ ′ ] [x^{\prime},x^{\prime\prime}] [x,x] 上利用拉格朗日定理有:
f ( x ′ ′ ) − f ( x ′ ) = f ′ ( x 0 ) ( x ′ ′ − x ′ ) ( x ′ &lt; x 0 &lt; x ′ ′ ) f(x^{\prime\prime})-f(x^{\prime})=f^{\prime}(x_{0})(x^{\prime\prime}-x^{\prime})(x^{\prime}&lt;x_{0}&lt;x^{\prime\prime}) f(x)f(x)=f(x0)(xx)(x<x0<x)因为 f ′ ( x 0 ) &gt; 0 f^{\prime}(x_{0})&gt;0 f(x0)>0 ,所以:
f ( x ′ ′ ) &gt; f ( x ′ ) f(x^{\prime\prime})&gt;f(x^{\prime}) f(x)>f(x) f ( x ) f(x) f(x) 单调递增。

2. 极值的必要和充分条件

  • 必要条件:若 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上取得极值,则 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的一个静止点。
    证明:
    若函数 f ( x ) f(x) f(x) 在区间 X \mathcal X X 上有定义且有有限的导数,且点 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的极值,那么根据极值的定义, f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) x 0 x_{0} x0 的某一领域的最值,根据费马中值定理 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0,因此 x 0 x_{0} x0 f ( x ) f(x) f(x) 的一个静止点。
  • 充分条件:若在各阶到书中,第一个在点 x 0 x_{0} x0 不等于零的是偶数阶导数,则函数在点 x = x 0 x=x_{0} x=x0 有极值。
    证明:
    假设函数 f ( x ) f(x) f(x) 的前 n − 1 n-1 n1 阶导数都是零,而 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_{0})\neq0 f(n)(x0)̸=0,将 f ( x ) f(x) f(x)佩亚诺型余项的泰勒公式展开,就有:
    f ( x ) = f ( x 0 ) + 0 + . . . + 0 + f ( n ) ( x ) + α ( x ) n ! ( x − x 0 ) n f(x)=f(x_{0})+0+...+0+\frac{f^{(n)}(x)+\alpha(x)}{n!}(x-x_{0})^{n} f(x)=f(x0)+0+...+0+n!f(n)(x)+α(x)(xx0)n f ( x ) − f ( x 0 ) = f ( n ) ( x ) + α ( x ) n ! ( x − x 0 ) n f(x)-f(x_{0})=\frac{f^{(n)}(x)+\alpha(x)}{n!}(x-x_{0})^{n} f(x)f(x0)=n!f(n)(x)+α(x)(xx0)n其中 α ( x ) \alpha(x) α(x) x → x 0 x\rightarrow x_{0} xx0 时, α ( x ) → 0 \alpha(x)\rightarrow0 α(x)0,于是当 x x x 足够接近 x x x 时,函数增量的正负性只取决于 f ( n ) ( x 0 ) f^{(n)}(x_{0}) f(n)(x0) ( x − x 0 ) n (x-x_{0})^{n} (xx0)n 的正负性。
    n n n 是偶数时 x &lt; x 0 x&lt;x_{0} x<x0 情况与 x &gt; x 0 x&gt;x_{0} x>x0 情况, f ( x ) − f ( x 0 ) f(x)-f(x_{0}) f(x)f(x0) 都有相同的正负性,也就是说, f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) x 0 x_{0} x0某个足够小的领域内的最值,也就是说 f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) 的一个极值。

3. 洛必达法则( 0 0 \frac00 00型未定式)

f ( x ) , g ( x ) f(x),g(x) f(x),g(x) a a a某个空心(仅左或仅右也行)领域上有定义且有有限的导数,如果 lim ⁡ x → a ( ± 0 ) f ( x ) = 0 , lim ⁡ x → a ( ± 0 ) g ( x ) = 0 , g ′ ( x ) ≠ 0 \lim_{x\rightarrow a(\pm0)}f(x)=0,\lim_{x\rightarrow a(\pm0)}g(x)=0,g^{\prime}(x)\neq0 limxa(±0)f(x)=0,limxa(±0)g(x)=0,g(x)̸=0,且:
lim ⁡ x → a ( ± 0 ) f ′ ( x ) g ′ ( x ) = K ( K ∈ R ) \lim_{x\rightarrow a(\pm0)}\frac{f^{\prime}(x)}{g^{\prime}(x)}=K(K\in\mathbb R) xa(±0)limg(x)f(x)=K(KR)则:
lim ⁡ x → a ( ± 0 ) f ( x ) g ( x ) = K \lim_{x\rightarrow a(\pm0)}\frac{f(x)}{g(x)}=K xa(±0)limg(x)f(x)=K证明:
只证明空心右领域的情况,空心左领域同理,于是空心领域即可得出。
给出 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) x = x 0 x=x_{0} x=x0 的定义 f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0 ,于是 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 在某一区间 [ a , b ] [a,b] [a,b] 上连续, 在 ( a , b ) (a,b) (a,b) 上有有限导数,且 g ′ ( x ) ≠ 0 g^{\prime}(x)\neq0 g(x)̸=0,根据柯西定理
f ( x ) g ( x ) = f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) ( x 0 ∈ ( a , x ) ) \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})}(x_{0}\in(a,x)) g(x)f(x)=g(x)g(a)f(x)f(a)=g(x0)f(x0)(x0(a,x)) lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x 0 → a f ′ ( x 0 ) g ′ ( x 0 ) = K \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x_{0}\rightarrow a}\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})}=K xalimg(x)f(x)=x0alimg(x0)f(x0)=K

  • 8
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值