数学分析一些证明

第三章-极限论

1. 序列极限的定义

对于数列 { x n } \{x_{n}\} {xn},若 ∀   ε > 0 , ∃   N > 0 ( N ∈ N ∗ ) , s . t .   n > N \forall~\varepsilon>0,\exist~N>0(N\in{\mathbb N^{*}}),s.t.~n>N  ε>0, N>0(NN),s.t. n>N时有
∣ x n − a ∣ &lt; ε \mid{x_{n}}-a\mid&lt;\varepsilon xna<ε则称
lim ⁡   x n = a ( x n → a ) \lim~x_{n}=a(x_{n}\rightarrow{a}) lim xn=a(xna)

2. 函数极限的两种定义

  • 对于任意以 a a a为其中一个聚点的集合 X   = { x } {\mathcal X~=\{x\}} X ={x} f ( x ) f(x) f(x) X \mathcal X X上有定义。从中任意选出数列 { x n } \{x_{n}\} {xn},若 x n → a x_{n}\rightarrow{a} xna x n ≠ a x_{n}\neq{a} xn̸=a 那么如果数列 { f ( x n ) } \{f(x_{n})\} {f(xn)}总有极限 A A A(有限或无限) (1) ,则 A A A f ( x ) f(x) f(x) x = a x=a x=a 处的极限,记作
    lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A xalimf(x)=A
  • a a a f ( x ) f(x) f(x)定义域的一个聚点,若 ∀   ε &gt; 0 , ∃   δ &gt; 0 , s . t .   ∣ x − a ∣ &lt; δ 时 有 \forall~\varepsilon&gt;0,\exist~\delta&gt;0,s.t.~\mid{x-a}\mid&lt;\delta时有  ε>0, δ>0,s.t. xa<δ
    ∣ f ( x ) − A ∣ &lt; ε \mid{f(x)}-A\mid&lt;\varepsilon f(x)A<ε则称
    lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A xalimf(x)=A
  • 函数极限不存在的定义略

3. 略

4. 极限的简单性质

  • 数列极限的性质
    1. 保序性:若 x n → a x_{n}\rightarrow{a} xna ( a &gt; p ) 或 ( a &lt; q ) (a&gt;p)或(a&lt;q) (a>p)(a<q),则 ∃ N ( N ∈ N ∗ ) , s . t .   n &gt; N \exist{N}(N\in{\mathbb N^{*}}),s.t.~n&gt;N N(NN),s.t. n>N时, ( x n &gt; p ) 或 ( x n &lt; q ) (x_{n}&gt;p)或(x_{n}&lt;q) (xn>p)(xn<q)
      证明:
      选取足够小的   ε ~\varepsilon  ε 使得
      ( a − ε &gt; p ) 或 ( a + ε &lt; q ) (a-\varepsilon&gt;p)或(a+\varepsilon&lt;q) (aε>p)(a+ε<q)这时由极限定义, ∃   N ( N ∈ N ∗ ) \exist~N(N\in \mathbb N^{*})  N(NN) n &gt; N n&gt;N n>N时有
      p &lt; a − ε &lt; x n &lt; a + ε &lt; q p&lt;a-\varepsilon&lt;x_{n}&lt;a+\varepsilon&lt;q p<aε<xn<a+ε<q所以 ( x n &gt; p ) 或 ( x n &lt; q ) (x_{n}&gt;p)或(x_{n}&lt;q) (xn>p)(xn<q)
    2. 保号性:取保序性p(q)为0的情况
    3. 保序性2:若 x n → a x_{n}\rightarrow{a} xna
      ( x n ≤ p ) 或 ( x n ≥ q ) (x_{n}\leq p)或(x_{n}\geq q) (xnp)(xnq)那么有
      ( a ≤ p ) 或 ( a ≥ q ) (a\leq p)或(a\geq q) (ap)(aq)
      证明:
      将上面保序性证明中的不等式改为
      q − ε ≤ x n − ε &lt; a &lt; x n + ε ≤ p + ε {q-\varepsilon}\leq x_{n}-\varepsilon&lt;a&lt;x_{n}+\varepsilon\leq{p+\varepsilon} qεxnε<a<xn+εp+ε由于 ε ∈ ( 0 , + ∞ ] \varepsilon\in(0,+\infin] ε(0,+]
      ( a ≤ p ) 或 ( a ≥ q ) (a\leq p)或(a\geq q) (ap)(aq)
    4. 唯一性
      证明:
      假设 ∃ a ≠ b \exist{a\neq{b}} a̸=b 且有 x n → a x_{n}\rightarrow{a} xna x n → b x_{n}\rightarrow{b} xnb,根据极限定义就会有 ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { a − ε &lt; x n &lt; a + ε b − ε &lt; x n &lt; b + ε \begin{cases}{a-\varepsilon&lt;x_{n}&lt;a+\varepsilon}\\{b-\varepsilon&lt;x_{n}&lt;b+\varepsilon}\end{cases} {aε<xn<a+εbε<xn<b+ε现在取 ε = ∣ a − b ∣ 2 \varepsilon=\frac{\mid{a-b}\mid}{2} ε=2ab,则 x n x_{n} xn不能同时满足上面两个式子,故 a = b a=b a=b
      5. 有界性:若数列有有限的极限,那么它是有界数列
      证明:
      假设它虽然有有限的极限,但是它是无界的,那么根据定义有:
      { ∀   ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 有 ∣ x n − a ∣ &lt; ε ∀ M &gt; 0 , ∃ n &gt; 0 ( n ∈ N ∗ ) , s . t . x n &gt; M \begin{cases}{\forall~\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时有\mid{x_{n}}-a\mid&lt;\varepsilon}\\{\forall{M&gt;0,\exist n&gt;0(n\in \mathbb N^{*}),s.t. x_{n}&gt;M}}\end{cases} { ε>0, N>0(NN),s.t. n>Nxna<εM>0,n>0(nN),s.t.xn>M现在取 M M M数列前 N N N以及 a + ε a+\varepsilon a+ε当中最大的一个,显然第二个式子无法成立,于是乎数列是有界的。
  • 函数极限的性质
    函数的性质证明,只要利用函数极限的第一种定义,取满足 ∣ x n − a ∣ &lt; δ \mid{x_{n}}-a\mid&lt;\delta xna<δ 的数列 { f ( x n ) } \{f(x_{n})\} {f(xn)}覆盖掉上面数列极限性质证明中的 x n x_{n} xn 即可,表述上面要添加对于充分接近于a的x,f(x)有……性质
    例子:
    保序性:若有 lim ⁡ x → a f ( x ) = A \lim_{x\rightarrow{a}}f(x)=A limxaf(x)=A ,若 ( A &gt; p ) 或 ( A &lt; q ) (A&gt;p)或(A&lt;q) (A>p)(A<q) ,则对于充分接近于 a a a x x x ( f ( x ) &gt; p ) 或 ( f ( x ) &lt; q ) (f(x)&gt;p)或(f(x)&lt;q) (f(x)>p)(f(x)<q)
    证明:
    f ( x ) f(x) f(x) 定义域中任取趋于 a a a 的数列 x n x_{n} xn ,由函数极限定义 f ( x n ) f(x_{n}) f(xn) 的极限即为 f ( x ) f(x) f(x) a a a 点的极限,即:(1)
    lim ⁡ f ( x n ) = A \lim{f(x_{n})}=A limf(xn)=A
    选取足够小的   ε ~\varepsilon  ε 使得
    ( A − ε &gt; p ) 或 ( A + ε &lt; q ) (A-\varepsilon&gt;p)或(A+\varepsilon&lt;q) (Aε>p)(A+ε<q)这时由极限定义, ∃   N ( N ∈ N ∗ ) \exist~N(N\in\mathbb N^{*})  N(NN) n &gt; N n&gt;N n>N时有 p &lt; A − ε &lt; f ( x n ) &lt; A + ε &lt; q p&lt;A-\varepsilon&lt;f(x_{n})&lt;A+\varepsilon&lt;q p<Aε<f(xn)<A+ε<q所以 ( f ( x n ) &gt; p ) 或 ( f ( x n ) &lt; q ) (f(x_{n})&gt;p)或(f(x_{n})&lt;q) (f(xn)>p)(f(xn)<q),其中 x n x_{n} xn充分接近 a a a x x x( n &gt; N n&gt;N n>N 的项)
  • 在等式与不等式中取极限
    1. x n = y n x_{n}=y_{n} xn=yn,且两数列有有限的极限,则 lim ⁡ x n = lim ⁡ y n = c ( c ∈ R ) \lim{x_{n}}=\lim{y_{n}}=c(c\in \mathbb{R}) limxn=limyn=c(cR)
      证明略
    2. x n ≥ y n x_{n}\geq y_{n} xnyn,且两数列有有限的极限,则 lim ⁡ x n ≥ lim ⁡ y n \lim{x_{n}}\geq\lim{y_{n}} limxnlimyn
      证明:
      若有 x n → a x_{n}\rightarrow{a} xna y n → b y_{n}\rightarrow{b} ynb,根据极限定义就会有 ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { x n − ε &lt; a &lt; x n + ε y n − ε &lt; b &lt; y n + ε \begin{cases}{x_{n}-\varepsilon&lt;a&lt;x_{n}+\varepsilon}\\{y_{n}-\varepsilon&lt;b&lt;y_{n}+\varepsilon}\end{cases} {xnε<a<xn+εynε<b<yn+ε由于 x n ≥ y n x_{n}\geq y_{n} xnyn,于是有 a − b &gt; x n − y n − 2 ε ≥ − 2 ε a-b&gt; x_{n}-y_{n}-2\varepsilon\geq-2\varepsilon ab>xnyn2ε2ε,即 a − b &gt; − 2 ε a-b&gt;-2\varepsilon ab>2ε
      又因为 ε &gt; 0 \varepsilon&gt;0 ε>0,故 a − b ≥ 0 a-b\geq0 ab0 a ≥ b a\geq b ab
      (备注: x n &gt; y n x_{n}&gt;y_{n} xn>yn时同样有 lim ⁡ x n ≥ lim ⁡ y n \lim{x_{n}}\geq\lim{y_{n}} limxnlimyn,证明一样)
    3. 对于数列 x n , y n , z n x_{n},y_{n},z_{n} xn,yn,zn,如果有 x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn,且 lim ⁡ x n = lim ⁡ z n = a \lim{x_{n}}=\lim{z_{n}}=a limxn=limzn=a,则 lim ⁡ y n = a \lim{y_{n}=a} limyn=a
      证明:
      由极限的定义知, ∀ ε &gt; 0 , ∃   N &gt; 0 ( N ∈ N ∗ ) , s . t .   n &gt; N 时 \forall{\varepsilon&gt;0,\exist~N&gt;0(N\in\mathbb {N^{*}}),s.t.~n&gt;N时} ε>0 N>0(NN),s.t. n>N
      { a − ε &lt; x n &lt; a + ε a − ε &lt; z n &lt; a + ε \begin{cases}{a-\varepsilon&lt;x_{n}&lt;a+\varepsilon}\\{a-\varepsilon&lt;z_{n}&lt;a+\varepsilon}\end{cases} {aε<xn<a+εaε<zn<a+ε于是乎由命题 x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn可知,
      a − ε &lt; x n ≤ y n ≤ z n &lt; a + ε a-\varepsilon&lt;x_{n}\leq y_{n}\leq z_{n}&lt;a+\varepsilon aε<xnynzn<a+ε于是乎 lim ⁡ y n = a \lim{y_{n}=a} limyn=a

5. 单调有界原理:

如果数列是单调且有界的数列,它必定有有限的极限
证明:
取数列单调递增有上界的例子,单调递减有下界的情况类似
如果数列 x n {x_{n}} xn 是上有界数列,那么根据上确界的有关性质,该数列必定有有限的上确界,设为 a = sup ⁡ { x n } a=\sup\{x_{n}\} a=sup{xn},并且对于任意的 ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . x N &gt; a − ε \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.x_{N}&gt;a-\varepsilon ε>0N(NN)s.t.xN>aε
又因为 x n x_{n} xn 为单调递增数列,故 ∀ n &gt; N , x n &gt; a − ε \forall n&gt;N,x_{n}&gt;a-\varepsilon n>Nxn>aε,同时 x n ≤ a x_{n}\leq a xna,于是
∣ x n − a ∣ &lt; ε \mid x_{n}-a\mid&lt;\varepsilon xna<ε lim ⁡ x n = a = sup ⁡ { x n } \lim{x_{n}}=a=\sup\{x_{n}\} limxn=a=sup{xn}

6. e 的定义以及证明:

考虑数列:
x n = ( 1 + 1 n ) n x_{n}=(1+\frac1{n})^{n} xn=(1+n1)n根据二项式定理:(可以自己在纸上画一画,由于有点长就简略变化过程了)
x n = ∑ i = 0 n ( 1 i ! ∏ k = 0 i ( 1 − k n ) ) x_{n}=\sum_{i=0}^{n}(\frac1{i!}\prod_{k=0}^{i}(1-\frac{k}{n})) xn=i=0n(i!1k=0i(1nk))那么它的下一项:
x n + 1 = ∑ i = 0 n + 1 ( 1 i ! ∏ k = 0 i ( 1 − k n + 1 ) ) x_{n+1}=\sum_{i=0}^{n+1}(\frac1{i!}\prod_{k=0}^{i}(1-\frac{k}{n+1})) xn+1=i=0n+1(i!1k=0i(1n+1k))很明显大于 x n x_{n} xn,说明 x n x_{n} xn是单调递增数列,其次:
x n &lt; ∑ i = 0 n 1 i ! &lt; 1 + ∑ i = 0 n − 1 1 2 i = 1 + 1 − 1 2 n 1 − 1 2 &lt; 3 x_{n}&lt;\sum_{i=0}^{n}\frac{1}{i!}&lt;1+\sum_{i=0}^{n-1}\frac1{2^{i}}=1+\frac{1-\frac1{2^{n}}}{1-\frac1{2}}&lt;3 xn<i=0ni!1<1+i=0n12i1=1+12112n1<3数列 x n x_{n} xn 有上界,故 x n x_{n} xn 有有限的极限,用 e e e 来表示。

7. 波尔查诺 - 魏尔斯特拉斯引理(收敛定理):

任何有界数列,总可以从中选出收敛于有限极限的子序列
证明:
由命题,设 x n ∈ [ a 0 , b 0 ] x_{n}\in[a_{0},b_{0}] xn[a0,b0],把区间分成两半,至少有其中一半有无穷个元素(若不然就只有有限个 x n x_{n} xn),取这一半区间为 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1](若两半都有无穷个元素则任取一半),不断如此,可以构成两个数列: a n , b n a_{n},b_{n} an,bn使得有无穷个 x n ∈ [ a n , b n ] x_{n}\in[a_{n},b_{n}] xn[an,bn],又易知这个区间的长度为
∣ b n − a n ∣ = b 0 − a 0 2 n \mid b_{n}-a_{n}\mid =\frac{b_{0}-a_{0}}{2^{n}} bnan=2nb0a0随着 n n n 的增大而减短,于是 ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . b 0 − a 0 2 N &lt; ε \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.\frac{b_{0}-a_{0}}{2^{N}}&lt;\varepsilon ε>0N(NN)s.t.2Nb0a0<ε,当 n &gt; N n&gt;N n>N 时,有:
∣ b n − a n ∣ &lt; ε \mid b_{n}-a_{n}\mid &lt;\varepsilon bnan<ε lim ⁡ ( b n − a n ) = 0 ⇒ lim ⁡ a n = lim ⁡ b n = c ( c ∈ [ a 0 , b 0 ] ) \lim({b_{n}-a_{n})=0\Rightarrow\lim{a_{n}}=\lim{b_{n}}}=c(c\in[a_{0},b_{0}]) lim(bnan)=0liman=limbn=c(c[a0,b0])于是因为 a n ≤ x n ≤ b n a_{n}\leq x_{n}\leq b_{n} anxnbn,由夹逼准则知:
lim ⁡ x n = c ( c ∈ [ a 0 , b n ] ) \lim{x_{n}}=c(c\in[a_{0},b_{n}]) limxn=c(c[a0,bn])

8. 柯西收敛准则

  • 数列极限存在准则: lim ⁡ x n = a ( a ∈ R ) \lim x_{n}=a(a\in\mathbb R) limxn=a(aR) ⇔ \Leftrightarrow ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N ε>0N(NN)s.t.n>Nn>N时,不等式
    ∣ x n − x n ′ ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid&lt;\varepsilon xnxn<ε恒成立
    证明:
    1. 必要性 ⇒ \Rightarrow
      由极限定义: ∀ ε 2 &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \frac\varepsilon{2}&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N 2ε>0N(NN)s.t.n>Nn>N
      { ∣ x n − a ∣ &lt; ε 2 ∣ x n ′ − a ∣ &lt; ε 2 \begin{cases}{\mid x_{n}-a\mid&lt;\frac\varepsilon2}\\{\mid x_{n^{\prime}}-a\mid&lt;\frac\varepsilon2}\end{cases} {xna<2εxna<2ε于是有:
      ∣ x n − x n ′ ∣ ≤ ∣ x n − a ∣ + ∣ x n ′ − a ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid\leq\mid x_{n}-a\mid+\mid x_{n^{\prime}}-a\mid&lt;\varepsilon xnxnxna+xna<ε
    2. 充分性 ⇐ \Leftarrow
      由题有: ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 且 n ′ &gt; N \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N且n^{\prime}&gt;N ε>0N(NN)s.t.n>Nn>N有:
      ∣ x n − x n ′ ∣ &lt; ε \mid x_{n}-x_{n^{\prime}}\mid&lt;\varepsilon xnxn<ε固定 n ′ , ε n^{\prime},\varepsilon nε 不变,有:
      x n ′ − ε &lt; x n &lt; x n ′ + ε x_{n^{\prime}}-\varepsilon&lt;x_{n}&lt;x_{n^{\prime}}+\varepsilon xnε<xn<xn+ε M M M前n项 x n x_{n} xn x n ′ + ε x_{n^{\prime}}+\varepsilon xn+ε 当中最大的一个,取 m m m前n项 x n x_{n} xn x n ′ − ε x_{n^{\prime}}-\varepsilon xnε 当中最小的一个,很明显有 x n ∈ [ m , M ] x_{n}\in[m,M] xn[m,M],根据收敛原理,可以从中取出一个子序列 { x n k } \{x_{n_{k}}\} {xnk}使得:
      lim ⁡ x n k = c ( c ∈ [ m , M ] ) \lim{x_{n_{k}}}=c(c\in[m,M]) limxnk=c(c[m,M])这时,由上面固定的 ε \varepsilon ε ∃ K ( K ∈ N ∗ ) \exist K(K\in\mathbb N^{*}) K(KN) s . t . k &gt; K s.t. k&gt;K s.t.k>K n k &gt; N n_{k}&gt;N nk>N 时,有:
      ∣ x n k − c ∣ &lt; ε \mid{x_{n_{k}}-c}\mid&lt;\varepsilon xnkc<ε由命题知又有:
      ∣ x n − x n k ∣ &lt; ε \mid x_{n}-x_{n_{k}}\mid&lt;\varepsilon xnxnk<ε结合两不等式有:
      ∣ x n − c ∣ &lt; ∣ x n − x n k ∣ + ∣ x n k − c ∣ &lt; 2 ε \mid x_{n}-c\mid&lt;\mid x_{n}-x_{n_{k}}\mid+\mid{x_{n_{k}}-c}\mid&lt;2\varepsilon xnc<xnxnk+xnkc<2ε
  • 函数极限存在准则: lim ⁡ x → a f ( x ) = A ( A ∈ R ) \lim_{x\rightarrow a} f(x)=A(A\in\mathbb R) limxaf(x)=A(AR) ⇔ \Leftrightarrow ∀ ε &gt; 0 , ∃ δ &gt; 0 , s . t . ∣ x − a ∣ &lt; δ 且 ∣ x ′ − a ∣ &lt; δ \forall \varepsilon&gt;0,\exist \delta&gt;0,s.t.\mid x-a\mid&lt;\delta且\mid x^{\prime}-a\mid&lt;\delta ε>0δ>0s.t.xa<δxa<δ时,不等式
    ∣ f ( x ) − f ( x ′ ) ∣ &lt; ε \mid f(x)-f(x^{\prime})\mid&lt;\varepsilon f(x)f(x)<ε恒成立。
    证明:
    同样可以用“数列的语言”(函数极限的第一种定义方式)来将函数的极限转化为数列的极限,转化需要补充的句子:
    { x n } 是 从 f ( x ) 定 义 域 中 选 出 的 趋 于 a 的 数 列 , ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , 对 于 数 列 { f ( x n ) } 有 … … \{x_{n}\}是从f(x)定义域中选出的趋于a的数列,\forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),对于数列\{f(x_{n})\}有…… {xn}f(x)aε>0N(NN){f(xn)}(1)
    ( x n x_{n} xn 本身即是可以任选的,具体可以看上面极限的简单性质部分中函数的极限的例子部分)

第四章-函数的连续性(与间断点)

1. 连续性的定义以及初等函数连续性的证明

  • 连续性定义
    x 0 x_{0} x0 是函数 f ( x ) f(x) f(x) 定义域中的一点,那么如果有:
    lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}) xx0limf(x)=f(x0)那么则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0上是连续的,否则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是间断的
    相对的,如果 f ( x 0 + 0 ) = f ( x 0 ) f(x_{0}+0)=f(x_{0}) f(x0+0)=f(x0),则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是右连续的,如果 f ( x 0 − 0 ) = f ( x 0 ) f(x_{0}-0)=f(x_{0}) f(x00)=f(x0),则称 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上是左连续的。
    易知:
    f ( x ) 是 连 续 的 ⇔ f ( x ) 既 是 左 连 续 的 又 是 右 连 续 的 f(x)是连续的\Leftrightarrow f(x)既是左连续的又是右连续的 f(x)f(x)
  • 单调函数的连续性条件:若 f ( x ) f(x) f(x) 是定义在 X \mathcal X X 上的单调函数,若 f ( x ) f(x) f(x) 的值域 R ( f ) ∈ Y R(f)\in\mathcal Y R(f)Y,并把 Y \mathcal Y Y 全部填满,那么 f ( x ) f(x) f(x) X \mathcal X X 上是连续的。
    证明:
    假设 f ( x ) f(x) f(x) 是在 X \mathcal X X 上的增函数(减函数同理即可)
    分别考虑 X \mathcal X X 中的每个 x x x右连续性左连续性便可以同理得出。
    x 0 ∈ X x_{0}\in\mathcal X x0X x 0 ≠ sup ⁡ ( x ) x_{0}\neq\sup(x) x0̸=sup(x),则有 y 0 = f ( x 0 ) ∈ Y y_{0}=f(x_{0})\in\mathcal Y y0=f(x0)Y
    ε &gt; 0 \varepsilon&gt;0 ε>0 并且 y 1 = y 0 + ε ∈ Y y_{1}=y_{0}+\varepsilon\in\mathcal Y y1=y0+εY(因为 x 0 ≠ sup ⁡ ( x ) x_{0}\neq\sup(x) x0̸=sup(x) f ( x ) f(x) f(x) 单调递增),由命题,可找到一个 x 1 ∈ X x_{1}\in\mathcal X x1X 并且 y 1 = f ( x 1 ) y_{1}=f(x_{1}) y1=f(x1)
    由于 f ( x ) f(x) f(x) 是增函数,于是有 x 1 &gt; x 0 x_{1}&gt;x_{0} x1>x0,令 δ = x 1 − x 0 \delta=x_{1}-x_{0} δ=x1x0 ,此时对于 x 0 &lt; x &lt; x 0 + δ = x 1 x_{0}&lt;x&lt;x_{0}+\delta=x_{1} x0<x<x0+δ=x1,则有:
    f ( x 0 ) &lt; f ( x ) &lt; f ( x 1 ) ⇔ 0 &lt; f ( x ) − f ( x 0 ) &lt; ε f(x_{0})&lt;f(x)&lt;f(x_{1})\Leftrightarrow 0&lt;f(x)-f(x_{0})&lt;\varepsilon f(x0)<f(x)<f(x1)0<f(x)f(x0)<ε于是:
    lim ⁡ x → x 0 + 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}+0}f(x)=f(x_{0}) xx0+0limf(x)=f(x0) f ( x ) f(x) f(x) X \mathcal X X 上是右连续的,同理也是左连续的,于是乎 f ( x ) f(x) f(x) X \mathcal X X 上是连续的。
    f ( x ) f(x) f(x) 为减函数时同理。
  • 连续函数的算术运算:若 f ( x ) , g ( x ) f(x),g(x) f(x)g(x) 时定义在同一区间 X \mathcal X X 上的连续函数,那么以下函数在这一区间 X \mathcal X X 上(除了 g ( x ) = 0 g(x)=0 g(x)=0 的位置)也是连续的:
    f ( x ) ± g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) g ( x ) f(x)\pm g(x),f(x)\cdot g(x),\frac{f(x)}{g(x)} f(x)±g(x)f(x)g(x)g(x)f(x)证明略
  • 复合函数的连续性:若 f ( x ) f(x) f(x) 是定义在 X \mathcal X X 上的函数,值域 R ( f ) ∈ Y R(f)\in\mathcal Y R(f)Y,而 g ( y ) g(y) g(y) 是定义在 Y \mathcal Y Y 上的函数。若 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上连续, g ( y ) g(y) g(y) y = y 0 = f ( x 0 ) y=y_{0}=f(x_{0}) y=y0=f(x0) 点上也连续,那么函数 g ( f ( x ) ) g(f(x)) g(f(x)) x = x 0 x=x_{0} x=x0 点上也是连续的。
    证明:
    由命题可知 ∀ ε &gt; 0 , ∃ δ y &gt; 0 , s . t . ∣ y − y 0 ∣ &lt; δ y \forall \varepsilon&gt;0,\exist\delta_{y}&gt;0,s.t.\mid y-y_{0}\mid&lt;\delta_{y} ε>0,δy>0,s.t.yy0<δy时:
    ∣ g ( y ) − g ( y 0 ) ∣ &lt; ε \mid g(y)-g(y_{0})\mid&lt;\varepsilon g(y)g(y0)<ε然而又对于这样的 δ y , ∃ δ x &gt; 0 , s . t . ∣ x − x 0 ∣ &lt; δ y \delta_{y},\exist \delta_{x}&gt;0,s.t. \mid x-x_{0}\mid&lt;\delta_{y} δy,δx>0,s.t.xx0<δy时:
    ∣ f ( x ) − f ( x 0 ) ∣ &lt; δ y ⇔ ∣ y − y 0 ∣ &lt; δ y \mid f(x)-f(x_{0})\mid&lt;\delta_{y}\Leftrightarrow \mid y-y_{0}\mid&lt;\delta_{y} f(x)f(x0)<δyyy0<δy于是乎 ∀ ε &gt; 0 , ∃ δ x &gt; 0 , s . t . ∣ x − x 0 ∣ &lt; δ x \forall \varepsilon&gt;0,\exist\delta_{x}&gt;0,s.t.\mid x-x_{0}\mid&lt;\delta_{x} ε>0,δx>0,s.t.xx0<δx时:
    ∣ g ( f ( x ) ) − g ( f ( x 0 ) ) ∣ &lt; ε \mid g(f(x))-g(f(x_{0}))\mid&lt;\varepsilon g(f(x))g(f(x0))<ε所以 g ( f ( x ) ) g(f(x)) g(f(x)) x = x 0 x=x_{0} x=x0 点上连续。
  • 初等函数的连续性
    证明:
    1. 有理整函数与有理分式函数:
    2. 指数函数:
      指数函数为单调函数(单调增或减),同时它的值域 R ( f ) ∈ ( 0 , + ∞ ) R(f)\in(0,+\infin) R(f)(0,+) 总成立,并且填满了整个区间 ( 0 , + ∞ ) (0,+\infin) (0,+) (因为对于每个 y 0 ∈ ( 0 , + ∞ ) y_{0}\in(0,+\infin) y0(0,+) 都能找到一个 x 0 x_{0} x0 使得 f ( x 0 ) = y 0 f(x_{0})=y_{0} f(x0)=y0 ),于是根据上面的单调函数连续性条件知指数函数是连续函数。
    3. 对数函数:
      它与指数函数同理
    4. 幂函数:
      y = x μ ( μ ≠ 0 ) ( x ∈ ( 0 , + ∞ ) ) y=x^{\mu}(\mu\neq0)(x\in(0,+\infin)) y=xμ(μ̸=0)(x(0,+)),当 μ ∈ ( 0 , + ∞ ) \mu\in (0,+\infin) μ(0,+) 时, y y y 单增且填满 ( 0 , + ∞ ) (0,+\infin) (0,+),当 μ ∈ ( − ∞ , 0 ) \mu\in (-\infin,0) μ(,0) y y y 单减且填满 ( 0 , + ∞ ) (0,+\infin) (0,+),幂函数连续。
      ( x ≤ 0 ) (x\leq0) (x0) 情况略。
    5. 三角函数:
      对于 y = sin ⁡ x y=\sin x y=sinx 把他分成无穷个区间 [ k π − π 2 , k π + π 2 ] [k\pi-\frac\pi2,k\pi+\frac\pi2] [kπ2π,kπ+2π] y y y 在其中每一个区间都是单调且充满的,所以 y = sin ⁡ x y=\sin x y=sinx 在所有区间都是连续的。同理 y = cos ⁡ x y=\cos x y=cosx 也是连续的。
      再结合连续函数的算术法则,在分母不为0的点,下面三角函数也是连续的:
      tan ⁡ x = sin ⁡ x cos ⁡ x , sec ⁡ x = 1 cos ⁡ x , cot ⁡ x = cos ⁡ x sin ⁡ x , csc ⁡ x = 1 sin ⁡ x \tan x=\frac{\sin x}{\cos x},\sec x=\frac1{\cos x},\cot x=\frac{\cos x}{\sin x},\csc x=\frac1{\sin x} tanx=cosxsinxsecx=cosx1cotx=sinxcosxcscx=sinx1
    6. 反三角函数:
      四个反三角函数 ( arcsin ⁡ x , arccos ⁡ x , arctan ⁡ x , a r c c o t   x ) (\arcsin x,\arccos x,\arctan x,arccot~x) (arcsinx,arccosx,arctanx,arccot x) 中,每一个都是在其定义域内单调递增或递减,同时填满其值域所在的区间,所以这四个反三角函数也是连续的。

2. 波尔查诺 - 柯西第一定理(零点定理(2)):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,又在这个区间两端是异号的,那么一定 ∃ c ∈ [ a 0 , b 0 ] , s . t . f ( c ) = 0 \exist c\in[a_{0},b_{0}],s.t. f(c)=0 c[a0,b0]s.t.f(c)=0
证明:
找这个区间的中点 x = a 0 + b 0 2 x=\frac{a_{0}+b_{0}}2 x=2a0+b0 f ( x ) f(x) f(x)有三种情况:
{ f ( x ) &gt; 0 , f ( x ) = 0 , f ( x ) &lt; 0. \begin{cases}f(x)&gt;0,\\f(x)=0,\\f(x)&lt;0.\end{cases} f(x)>0,f(x)=0,f(x)<0.若为中间的情况,则这点就是所要求的 c c c否则,这一点的函数值必定与两端的其中一端的函数值异号,令这一区间为 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1] ,一直重复以上过程,若始终没有遇到 f ( a n + b n 2 ) = 0 f(\frac{a_{n}+b_{n}}2)=0 f(2an+bn)=0的情况,那么这时候这个区间的长度为:
∣ b n − a n ∣ = b 0 − a 0 2 n \mid b_{n}-a_{n}\mid =\frac{b_{0}-a_{0}}{2^{n}} bnan=2nb0a0随着 n n n 的增大而减短,于是 ∀ ε &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . b 0 − a 0 2 N &lt; ε \forall \varepsilon&gt;0,\exist N(N\in\mathbb N^{*}),s.t.\frac{b_{0}-a_{0}}{2^{N}}&lt;\varepsilon ε>0N(NN)s.t.2Nb0a0<ε,当 n &gt; N n&gt;N n>N 时,有:
∣ b n − a n ∣ &lt; ε \mid b_{n}-a_{n}\mid &lt;\varepsilon bnan<ε lim ⁡ ( b n − a n ) = 0 ⇒ lim ⁡ a n = lim ⁡ b n = c ( c ∈ [ a 0 , b 0 ] ) \lim({b_{n}-a_{n})=0\Rightarrow\lim{a_{n}}=\lim{b_{n}}}=c(c\in[a_{0},b_{0}]) lim(bnan)=0liman=limbn=c(c[a0,b0])根据函数连续性的特点以及数列极限的简单性质(保序性),有:
f ( c ) = lim ⁡ a n ≤ 0 , f ( c ) = lim ⁡ b n ≥ 0 f(c)=\lim a_{n}\leq0,f(c)=\lim b_{n}\geq0 f(c)=liman0,f(c)=limbn0于是乎:
f ( c ) = 0 f(c)=0 f(c)=0

3. 魏尔斯特拉斯第一定理(有界性定理):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,则它是有界的。
证明:
若不然,假设无上界,那么在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 中存在一个数列 x n x_{n} xn ∀ E &gt; 0 , ∃ N ( N ∈ N ∗ ) , s . t . n &gt; N 时 , f ( x n ) &gt; E \forall E &gt;0,\exist N(N\in\mathbb N^{*}),s.t.n&gt;N时,f(x_{n})&gt;E E>0N(NN)s.t.n>Nf(xn)>E,即:
lim ⁡ f ( x n ) = + ∞ \lim f(x_{n})=+\infin limf(xn)=+然而由波尔查诺-魏尔斯特拉斯引理(收敛原理),可以从 x n x_{n} xn 中选出一个子序列 x n k x_{n_{k}} xnk 使得:
lim ⁡ x n k = x 0 ∈ [ a 0 , b 0 ] \lim x_{n_{k}}=x_{0}\in [a_{0},b_{0}] limxnk=x0[a0,b0]根据连续性定义:
lim ⁡ f ( x n k ) = f ( x 0 ) \lim f(x_{n_{k}})=f(x_{0}) limf(xnk)=f(x0)很明显与上式矛盾,故 f ( x ) f(x) f(x) 有上界,同理也有下界,所以 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 是有界的。

4. 魏尔斯特拉斯第二定理(最值定理):

f ( x ) f(x) f(x) 在区间 [ a 0 , b 0 ] [a_{0},b_{0}] [a0,b0] 上有定义且连续,则它是有界的,且必定达到它的上确界和下确界。
证明:
M = sup ⁡ { f ( x ) } M=\sup\{f(x)\} M=sup{f(x)} ,利用反证法:假设 ∀ x ∈ [ a 0 , b 0 ] , f ( x ) &lt; M \forall x\in[a_{0},b_{0}],f(x)&lt;M x[a0,b0]f(x)<M,这时构造辅助函数:
g ( x ) = 1 M − f ( x ) g(x)=\frac1{M-f(x)} g(x)=Mf(x)1由假设知这里分母不为0,所以 g ( x ) g(x) g(x) 是连续函数,由魏尔斯特拉斯第一定理 g ( x ) g(x) g(x) 是有界函数,设其上界为 μ &gt; 0 \mu&gt;0 μ>0 ,有 g ( x ) ≤ μ g(x)\leq \mu g(x)μ 于是:
f ( x ) ≤ M − 1 μ f(x)\leq M-\frac1{\mu} f(x)Mμ1于是乎 M − 1 μ M-\frac1{\mu} Mμ1 也是 f ( x ) f(x) f(x) 的一个上界,但这个上界小于给定的上确界 M M M,故矛盾。
所以至少 ∃ x 0 ∈ [ a 0 , b 0 ] , s . t .   f ( x 0 ) = M \exist x_{0}\in [a_{0},b_{0}],s.t.~f(x_{0})=M x0[a0,b0]s.t. f(x0)=M,即 f ( x ) f(x) f(x) 可以达到它的上确界。

第五章-一元函数的微分法

1. 反函数求导法则 :

y = f ( x ) y=f(x) y=f(x) 存在它的反函数 x = g ( y ) x=g(y) x=g(y) ,且 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上有有限且不为0的导数 f ′ ( x 0 ) f^{\prime}(x_{0}) f(x0) 那么它的反函数在对应的点 y = y 0 = f ( x 0 ) y=y_{0}=f(x_{0}) y=y0=f(x0) 上也有导数存在且等于 g ′ ( y 0 ) = 1 f ′ ( x 0 ) g^{\prime}(y_{0})=\frac1{f^{\prime}(x_{0})} g(y0)=f(x0)1
证明
根据导数的定义:
g ′ ( y 0 ) = lim ⁡ y → y 0 g ( y ) − g ( y 0 ) y − y 0 = lim ⁡ x → x 0 1 f ( x ) − f ( x 0 ) x − x 0 = 1 f ′ ( x 0 ) g^{\prime}(y_{0})=\lim_{y\rightarrow y_{0}}\frac{g(y)-g(y_{0})}{y-y_{0}}=\lim_{x\rightarrow x_{0}}\frac{1}{\frac{f(x)-f(x_{0})}{x-x_{0}}}=\frac{1}{f^{\prime}(x_{0})} g(y0)=yy0limyy0g(y)g(y0)=xx0limxx0f(x)f(x0)1=f(x0)1

2. 复合函数的求导法则:

y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_{0} u=u0 点有有限导数 f ′ ( u 0 ) f^{\prime}(u_{0}) f(u0) u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_{0} x=x0 点有有限导数 g ′ ( x 0 ) g^{\prime}(x_{0}) g(x0),那么复合函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) x = x 0 x=x_{0} x=x0 点也有导数,表示为:
( f ∘ g ) ′ ( x ) = f ′ ( u 0 ) ⋅ g ′ ( x 0 ) (f\circ g)^{\prime}(x)=f^{\prime}(u_{0})\cdot g^{\prime}(x_{0}) (fg)(x)=f(u0)g(x0)或者用莱布尼茨表示为更加形象的式子:

d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=dudydxdu证明:
由导数的定义知:
f ′ ( u ) = lim ⁡ Δ u → 0 Δ y Δ u ⇒ Δ y = f ′ ( u ) ⋅ Δ u + α ⋅ Δ u f^{\prime}(u)=\lim_{\Delta u\rightarrow0}\frac{\Delta y}{\Delta u}\Rightarrow\Delta y=f^{\prime}(u)\cdot\Delta u+\alpha\cdot \Delta u f(u)=Δu0limΔuΔyΔy=f(u)Δu+αΔu Δ y Δ x = f ′ ( u ) Δ u Δ x + α Δ u Δ x \frac{\Delta y}{\Delta x}=f^{\prime}(u)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x} ΔxΔy=f(u)ΔxΔu+αΔxΔu两边取极限 Δ x → 0 \Delta x\rightarrow 0 Δx0 得:
( f ∘ g ) ′ ( x ) = f ′ ( u 0 ) ⋅ g ′ ( x 0 ) (f\circ g)^{\prime}(x)=f^{\prime}(u_{0})\cdot g^{\prime}(x_{0}) (fg)(x)=f(u0)g(x0)( α ⋅ g ′ ( x ) = 0 \alpha\cdot g^{\prime}(x)=0 αg(x)=0 显然成立)

3. 可微性与导数存在的关系定理:

在一元函数中,可微 ⇔ \Leftrightarrow 可导
证明:

  • ⇐ \Leftarrow
    f ( x ) f(x) f(x) 可导,则有:
    y ′ = lim ⁡ Δ x → 0 Δ y Δ x ⇒ Δ y = y ′ Δ x + α Δ x = y ′ Δ x + o ( Δ x ) y^{\prime}=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\Rightarrow\Delta y=y^{\prime}\Delta x+\alpha\Delta x=y^{\prime}\Delta x+o(\Delta x) y=Δx0limΔxΔyΔy=yΔx+αΔx=yΔx+o(Δx)于是乎根据函数可微的定义:
    d y = y ′ Δ x dy=y^{\prime}\Delta x dy=yΔx
  • ⇒ \Rightarrow
    f ( x ) f(x) f(x) 可微,则有:
    Δ y Δ x = A + o ( Δ x ) Δ x \frac{\Delta y}{\Delta x}=A+\frac{o(\Delta x)}{\Delta x} ΔxΔy=A+Δxo(Δx)两边取极限 Δ x → 0 \Delta x\rightarrow 0 Δx0 得:
    y ′ = lim ⁡ Δ x → 0 Δ y Δ x = A y^{\prime}=\lim_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}=A y=Δx0limΔxΔy=A

4. 一阶微分的形式不变性:

即使用新的自变量 (例如 t t t )取代替原来得自变量(例如 x x x ),比如将 x = g ( t ) x=g(t) x=g(t) 带入原来的函数 y = f ( x ) y=f(x) y=f(x) ,函数 y = f ( x ) y=f(x) y=f(x) y = f ( g ( t ) ) y=f(g(t)) y=f(g(t)) 的一阶微分有相同的形式。
证明
在自变量不变的情况下, y = f ( x ) y=f(x) y=f(x) 的微分表示为:
d y = y x ′ ⋅ d x dy=y^{\prime}_{x}\cdot dx dy=yxdx对于变换自变量的函数 x = g ( t ) x=g(t) x=g(t) 的微分可表示为:
d x = x t ′ ⋅ d t dx=x^{\prime}_{t}\cdot dt dx=xtdt于是乎原来函数的微分可表示为:
d y = y x ′ x t ′ ⋅ d t dy=y^{\prime}_{x}x^{\prime}_{t}\cdot dt dy=yxxtdt根据复合函数的求导法则:
y t ′ = y x ′ ⋅ x t ′ y^{\prime}_{t}=y^{\prime}_{x}\cdot x^{\prime}_{t} yt=yxxt于是乎原来函数的微分又可以表示为:
d y = y t ′ ⋅ d t dy=y^{\prime}_{t}\cdot dt dy=ytdt

第六章-微分学的基本定理

1. 费马定理:

若函数 f ( x ) f(x) f(x) 在其定义域内的某一内点(不在区间两端) x = x 0 x=x_{0} x=x0 上取得最值,那么 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0
证明:
假设 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 点上取得最大值,那么有:
f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f^{\prime}(x_{0})=\lim_{x\rightarrow x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} f(x0)=xx0limxx0f(x)f(x0)然而右式分式上的分子始终小于等于0,当 x &lt; x 0 x&lt;x_{0} x<x0 时:
f ( x ) − f ( x 0 ) x − x 0 ≥ 0 \frac{f(x)-f(x_{0})}{x-x_{0}}\geq0 xx0f(x)f(x0)0 x &gt; x 0 x&gt;x_{0} x>x0 时:
f ( x ) − f ( x 0 ) x − x 0 ≤ 0 \frac{f(x)-f(x_{0})}{x-x_{0}}\leq0 xx0f(x)f(x0)0于是,根据函数极限的保号性
f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0最小值同理

2. 罗尔定理:

f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),那么 ∃ x 0 ∈ ( a , b ) , s . t . f ′ ( x 0 ) = 0 \exist x_{0}\in(a,b),s.t. f^{\prime}(x_{0})=0 x0(a,b)s.t.f(x0)=0
证明
根据魏尔斯特拉斯第二定理(最值定理),函数在区间 [ a , b ] [a,b] [a,b] 上可以取到最大值 M M M 和最小值 m m m

  1. m = M m=M m=M 时:
    很显然 f ( x ) = C ( C ∈ R ) f(x)=C(C\in \mathbb R) f(x)=C(CR) 恒成立,故 f ′ ( x ) = 0 f^{\prime}(x)=0 f(x)=0 x ∈ ( a , b ) x\in (a,b) x(a,b) 上处处成立。
  2. m &lt; M m&lt;M m<M 时:
    f ( x ) f(x) f(x) 不可能在两个端点上分别取到最大值和最小值(因为 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ),所以至少有一点 x 0 ∈ ( a , b ) x_{0}\in(a,b) x0(a,b),使得 f ( x 0 ) = m f(x_{0})=m f(x0)=m f ( x 0 ) = M f(x_{0})=M f(x0)=M ,再根据上面的费马中值定理 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0

3. 拉格朗日定理(有限增量定理):

f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,那么 ∃ x 0 ∈ ( a , b ) \exist x_{0}\in(a,b) x0(a,b) ,使得: f ( b ) − f ( a ) b − a = f ′ ( x 0 ) \frac{f(b)-f(a)}{b-a}=f^{\prime}(x_{0}) baf(b)f(a)=f(x0)
证明:
证明的关键在于构造符合罗尔定理的函数,即构造 F ( f ( x ) ) F(f(x)) F(f(x)) 使得:
F ( f ( a ) ) = F ( f ( b ) ) F(f(a))=F(f(b)) F(f(a))=F(f(b))符合这样条件的函数有很多种,我们取最简单的:
F ( f ( x ) ) = f ( x ) − k x F(f(x))=f(x)-kx F(f(x))=f(x)kx很明显,由上面等式我们可以得出:
k = f ( b ) − f ( a ) b − a k=\frac{f(b)-f(a)}{b-a} k=baf(b)f(a)于是根据罗尔定理 ∃ x 0 ∈ ( a , b ) , s . t .   ( F ( f ( x 0 ) ) ) ′ = 0 \exist x_{0}\in(a,b),s.t.~(F(f(x_{0})))^{\prime}=0 x0(a,b)s.t. (F(f(x0)))=0,即:
f ′ ( x 0 ) = k = f ( b ) − f ( a ) b − a f^{\prime}(x_{0})=k=\frac{f(b)-f(a)}{b-a} f(x0)=k=baf(b)f(a)

4. 柯西定理(有限增量公式的推广):

若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在区间 [ a , b ] [a,b] [a,b] 上有定义且连续,在区间 ( a , b ) (a,b) (a,b) 上可导,在区间 ( a , b ) (a,b) (a,b) g ′ ( x ) ≠ 0 g^{\prime}(x)\neq0 g(x)̸=0,那么 ∃ x 0 ∈ ( a , b ) \exist x_{0}\in(a,b) x0(a,b) ,使得: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})} g(b)g(a)f(b)f(a)=g(x0)f(x0)
证明:
首先我们利用反证法证明 g ( b ) ≠ g ( a ) g(b)\neq g(a) g(b)̸=g(a)
g ( b ) = g ( a ) g(b)=g(a) g(b)=g(a) ,由罗尔定理 ∃ x 1 ∈ ( a , b ) , s . t .   g ′ ( x 1 ) = 0 \exist x_{1}\in (a,b),s.t.~g^{\prime}(x_{1})=0 x1(a,b)s.t. g(x1)=0 与原定理假设相悖,于是乎 g ( b ) ≠ g ( a ) g(b)\neq g(a) g(b)̸=g(a)
然后类似于拉格朗日定理,构造一个包含 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的函数 F ( x ) F(x) F(x) 使得: F ( a ) = F ( b ) F(a)=F(b) F(a)=F(b)同样的我们选取最简单的形式:
F ( x ) = f ( x ) − k ⋅ g ( x ) F(x)=f(x)-k\cdot g(x) F(x)=f(x)kg(x)根据上面等式我们可以求出:
k = f ( b ) − f ( a ) g ( b ) − g ( a ) k=\frac{f(b)-f(a)}{g(b)-g(a)} k=g(b)g(a)f(b)f(a)于是乎,再根据罗尔定义, ∃ x 0 ∈ ( a , b ) , s . t . F ′ ( x 0 ) = 0 \exist x_{0}\in (a,b),s.t. F^{\prime}(x_0)=0 x0(a,b)s.t.F(x0)=0,展开即可得:
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})} g(b)g(a)f(b)f(a)=g(x0)f(x0)

5. 初等函数的泰勒公式:

x = 0 x=0 x=0 点上的泰勒展开公式为:
f ( x ) = ∑ i = 0 n f ( i ) ( x ) ⋅ x i i ! + r n ( x ) f(x)=\sum_{i=0}^{n}\frac{f^{(i)}(x)\cdot x^{i}}{i!}+r_{n}(x) f(x)=i=0ni!f(i)(x)xi+rn(x)证明初等函数的泰勒展开就是在求初等函数在 x = 0 x=0 x=0 点上的 n n n 阶导数值,无太多技巧性,所以这里证明从略。

  1. f ( x ) = e x f(x)=e^{x} f(x)=ex
  2. f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx
  3. f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx
  4. f ( x ) = ( 1 + x ) μ f(x)=(1+x)^{\mu} f(x)=(1+x)μ
  5. f ( x ) = ln ⁡ ( 1 + x ) f(x)=\ln(1+x) f(x)=ln(1+x)
  6. f ( x ) = arctan ⁡ ( x ) f(x)=\arctan(x) f(x)=arctan(x)

第七章-应用导数来研究函数

1. 函数为单调的条件

若函数 f ( x ) f(x) f(x) 定义在区间 X \mathcal X X 上,且在其内有有限的导数 f ′ ( x ) f^{\prime}(x) f(x),并且在其两端(如果两端在 X \mathcal X X 上0)连续,那么 f ( x ) f(x) f(x) X \mathcal X X 上狭义单调递增(递减)的充分条件为:
f ′ ( x ) &gt; 0 ( &lt; 0 ) f^{\prime}(x)&gt;0 (&lt;0) f(x)>0(<0)证明
假设 f ( x ) f(x) f(x) 单调递增,单调递减的部分同理。
X \mathcal X X 上任取两个数 x ′ , x ′ ′ x^{\prime},x^{\prime\prime} x,x,且 x ′ &lt; x ′ ′ x^{\prime}&lt;x^{\prime\prime} x<x,在区间 [ x ′ , x ′ ′ ] [x^{\prime},x^{\prime\prime}] [x,x] 上利用拉格朗日定理有:
f ( x ′ ′ ) − f ( x ′ ) = f ′ ( x 0 ) ( x ′ ′ − x ′ ) ( x ′ &lt; x 0 &lt; x ′ ′ ) f(x^{\prime\prime})-f(x^{\prime})=f^{\prime}(x_{0})(x^{\prime\prime}-x^{\prime})(x^{\prime}&lt;x_{0}&lt;x^{\prime\prime}) f(x)f(x)=f(x0)(xx)(x<x0<x)因为 f ′ ( x 0 ) &gt; 0 f^{\prime}(x_{0})&gt;0 f(x0)>0 ,所以:
f ( x ′ ′ ) &gt; f ( x ′ ) f(x^{\prime\prime})&gt;f(x^{\prime}) f(x)>f(x) f ( x ) f(x) f(x) 单调递增。

2. 极值的必要和充分条件

  • 必要条件:若 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 上取得极值,则 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的一个静止点。
    证明:
    若函数 f ( x ) f(x) f(x) 在区间 X \mathcal X X 上有定义且有有限的导数,且点 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的极值,那么根据极值的定义, f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) x 0 x_{0} x0 的某一领域的最值,根据费马中值定理 f ′ ( x 0 ) = 0 f^{\prime}(x_{0})=0 f(x0)=0,因此 x 0 x_{0} x0 f ( x ) f(x) f(x) 的一个静止点。
  • 充分条件:若在各阶到书中,第一个在点 x 0 x_{0} x0 不等于零的是偶数阶导数,则函数在点 x = x 0 x=x_{0} x=x0 有极值。
    证明:
    假设函数 f ( x ) f(x) f(x) 的前 n − 1 n-1 n1 阶导数都是零,而 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_{0})\neq0 f(n)(x0)̸=0,将 f ( x ) f(x) f(x)佩亚诺型余项的泰勒公式展开,就有:
    f ( x ) = f ( x 0 ) + 0 + . . . + 0 + f ( n ) ( x ) + α ( x ) n ! ( x − x 0 ) n f(x)=f(x_{0})+0+...+0+\frac{f^{(n)}(x)+\alpha(x)}{n!}(x-x_{0})^{n} f(x)=f(x0)+0+...+0+n!f(n)(x)+α(x)(xx0)n f ( x ) − f ( x 0 ) = f ( n ) ( x ) + α ( x ) n ! ( x − x 0 ) n f(x)-f(x_{0})=\frac{f^{(n)}(x)+\alpha(x)}{n!}(x-x_{0})^{n} f(x)f(x0)=n!f(n)(x)+α(x)(xx0)n其中 α ( x ) \alpha(x) α(x) x → x 0 x\rightarrow x_{0} xx0 时, α ( x ) → 0 \alpha(x)\rightarrow0 α(x)0,于是当 x x x 足够接近 x x x 时,函数增量的正负性只取决于 f ( n ) ( x 0 ) f^{(n)}(x_{0}) f(n)(x0) ( x − x 0 ) n (x-x_{0})^{n} (xx0)n 的正负性。
    n n n 是偶数时 x &lt; x 0 x&lt;x_{0} x<x0 情况与 x &gt; x 0 x&gt;x_{0} x>x0 情况, f ( x ) − f ( x 0 ) f(x)-f(x_{0}) f(x)f(x0) 都有相同的正负性,也就是说, f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) x 0 x_{0} x0某个足够小的领域内的最值,也就是说 f ( x 0 ) f(x_{0}) f(x0) f ( x ) f(x) f(x) 的一个极值。

3. 洛必达法则( 0 0 \frac00 00型未定式)

f ( x ) , g ( x ) f(x),g(x) f(x),g(x) a a a某个空心(仅左或仅右也行)领域上有定义且有有限的导数,如果 lim ⁡ x → a ( ± 0 ) f ( x ) = 0 , lim ⁡ x → a ( ± 0 ) g ( x ) = 0 , g ′ ( x ) ≠ 0 \lim_{x\rightarrow a(\pm0)}f(x)=0,\lim_{x\rightarrow a(\pm0)}g(x)=0,g^{\prime}(x)\neq0 limxa(±0)f(x)=0,limxa(±0)g(x)=0,g(x)̸=0,且:
lim ⁡ x → a ( ± 0 ) f ′ ( x ) g ′ ( x ) = K ( K ∈ R ) \lim_{x\rightarrow a(\pm0)}\frac{f^{\prime}(x)}{g^{\prime}(x)}=K(K\in\mathbb R) xa(±0)limg(x)f(x)=K(KR)则:
lim ⁡ x → a ( ± 0 ) f ( x ) g ( x ) = K \lim_{x\rightarrow a(\pm0)}\frac{f(x)}{g(x)}=K xa(±0)limg(x)f(x)=K证明:
只证明空心右领域的情况,空心左领域同理,于是空心领域即可得出。
给出 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) x = x 0 x=x_{0} x=x0 的定义 f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0 ,于是 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 在某一区间 [ a , b ] [a,b] [a,b] 上连续, 在 ( a , b ) (a,b) (a,b) 上有有限导数,且 g ′ ( x ) ≠ 0 g^{\prime}(x)\neq0 g(x)̸=0,根据柯西定理
f ( x ) g ( x ) = f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( x 0 ) g ′ ( x 0 ) ( x 0 ∈ ( a , x ) ) \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})}(x_{0}\in(a,x)) g(x)f(x)=g(x)g(a)f(x)f(a)=g(x0)f(x0)(x0(a,x)) lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x 0 → a f ′ ( x 0 ) g ′ ( x 0 ) = K \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x_{0}\rightarrow a}\frac{f^{\prime}(x_{0})}{g^{\prime}(x_{0})}=K xalimg(x)f(x)=x0alimg(x0)f(x0)=K

数学分析中的重要定理 作者:杨艳萍,明清河 著 出版时间:2015年版 内容简介 《数学分析中的重要定理》是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。   《数学分析中的重要定理》从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。   《数学分析中的重要定理》可供数学及相关专业的本科生、研究生和从事数学分析的教学研究人员参考。 目录 第1章 微积分基本定理 1.1 微积分基本定理的历史演变 1.1.1 微积分基本定理的发现阶段 1.1.2 微积分基本定理的创立阶段 1.1.3 微积分基本定理的完善阶段 1.2 微积分基本定理的内容与证明 1.2.1 微积分第一基本定理及其证明 1.2.2 微积分第二基本定理及其证明 1.3 微积分基本定理的相关内容分析 1.3.1 微积分基本定理的条件与结论 1.3.2 微积分基本定理的意义与作用 1.3.3 两种形式微积分基本定理之间的关系 1.3.4 微积分基本定理与其他定理之间的关系 1.4 微积分基本定理的应用 1.4.1 求含有变限积分函数的导数 1.4.2 求含有变限积分函数的极限 1.4.3 求含有变限积分的函数方程的解 1.4.4 讨论含变限积分函数的性质 1.4.5 构造变限积分辅助函数,证明等式与不等式 1.4.6 利用微积分基本定理证明数学分析中的重要定理 1.4.7 利用牛顿莱布尼茨公式计算定积分 1.5 微积分基本定理的推广 1.5.1 原函数存在定理的推广 1.5.2 变限积分求导公式的推广 1.5.3 牛顿莱布尼茨公式的推广 参考文献 第2章 微分中值定理 2.1 微分中值定理的历史演变 2.1.1 对微分中值定理的初步认识 2.1.2 罗尔中值定理的演变 2.1.3 拉格朗日中值定理的演变 2.1.4 柯西中值定理的演变 2.1.5 泰勒中值定理的演变 2.2 微分中值定理的内容与证明 2.2.1 罗尔中值定理及其证明 2.2.2 拉格朗日中值定理及其证明 2.2.3 柯西中值定理及其证明 2.2.4 泰勒中值定理及其证明 2.3 微分中值定理的相关内容分析 2.3.1 微分中值定理的背景 2.3.2 微分中值定理的条件与结论 2.3.3 微分中值定理的意义与作用 2.3.4 四个微分中值定理之间的关系 2.3.5 微分中值定理的中值点 2.4 微分中值定理的应用 2.4.1 罗尔中值定理的应用 2.4.2 拉格朗日中值定理的应用 2.4.3 柯西中值定理的应用 2.4.4 泰勒中值定理的应用 2.5 微分中值定理的推广 2.5.1 罗尔中值定理的推广 2.5.2 拉格朗日中值定理的推广 2.5.3 柯西中值定理的推广 参考文献 第3章 积分中值定理 3.1 积分中值定理的历史演变 3.2 积分中值定理的内容与证明 3.2.1 积分第一中值定理及其证明 3.2.2 推广的积分第一中值定理及其证明 3.2.3 积分第二中值定理及其证明 3.2.4 加强条件的积分第二中值定理及其证明 3.3 积分中值定理的相关内容分析 3.3.1 积分中值定理的几何意义 3.3.2 积分中值定理的条件与结论 3.3.3 微分中值定理与积分中值定理之间的关系 3.3.4 积分中值定理的中值点 3.4 积分中值定理的应用 3.4.1 估计某些定积分的值 3.4.2 求含有积分的极限 3.4.3 证明含有积分的不等式 3.4.4 证明含有中值点的积分问题 3.4.5 讨论含积分函数的收敛性与单调性 3.5 积分中值定理的改进与推广 3.5.1 积分中值定理的改进 3.5.2 积分第一中值定理的推广 3.5.3 积分第二中值定理的推广 参考文献 第4章 积分关系定理 4.1 积分关系定理的历史演变 4.2 积分关系定理的内容与证明 4.2.1 格林公式及其证明 4.2.2 高斯公式及其证明 4.2.3 斯托克斯公式及其证明 4.3 积分关系定理的相关内容分析 4.3.1 各类积分的起源与几何意义 4.3.2 各类积分之间的关系 4.3.3 各类积分之间的转化 4.3.4 四个积分公式之间的关系 4.3.5 四个积分公式的统一形式 4.4 积分关系定理的应用 4.4.1 格林公式的应用 4.4.2 高斯公式的应用 4.4.3 斯托克斯公式的应用 4.5 积分关系定理的推广 4.5.1 格林公式的推广 4.5.2 高斯公式的推广 4.5.3 斯托克斯公式的推广 参考文献 第5章 极限关系定理 5.1 海涅定理的历史演变 5.2 海涅定理的内容与证明 5.3 海涅定理的相关内容分析 5.3.1 海涅定理的条件与结论 5.3.2 海涅定理的意义与作用 5.4 海涅定理的应用 5.4.1 证明函数极限不存在 5.4.2 证明函数极限的性质 5.4.3 求数列的极限 5.4.4 判断级数的敛散性 5.4.5 判断函数的可导性 5.4.6 证明函数为常量函数 5.5 海涅定理的推广 5.5.1 把任意数列 推广为单调数列 5.5.2 把 存在极限 推广为非正常极限 5.5.3 把函数极限存在推广为函数连续及单侧连续 5.5.4 把任意数列 推广为有理(无理)数列 5.5.5 把函数极限存在推广为含参变量广义积分一致收敛 参考文献 第6章 闭区间上连续函数的性质定理 6.1 闭区间上连续函数性质定理的历史演变 6.2 闭区间上连续函数性质定理的内容与证明 6.2.1 有界性定理及其证明 6.2.2 最值性定理及其证明 6.2.3 零点存在定理及其证明 6.2.4 介值性定理及其证明 6.2.5 一致连续性定理及其证明 6.3 闭区间上连续函数性质定理的相关内容分析 6.3.1 闭区间上连续函数性质定理的理解 6.3.2 闭区间上连续函数性质定理的几何意义 6.3.3 闭区间上连续函数性质定理的条件与结论 6.3.4 闭区间上连续函数性质定理的统一表述 6.4 闭区间上连续函数性质定理的推广 6.4.1 有界性定理的推广 6.4.2 最值性定理的推广 6.4.3 零点存在定理的推广 6.4.4 介值性定理的推广 6.4.5 一致连续性定理的推广 6.5 闭区间上连续函数性质定理的应用 6.5.1 有界性定理的应用 6.5.2 最值性定理的应用 6.5.3 零点存在定理的应用 6.5.4 介值性定理的应用 6.5.5 一致连续性定理的应用 参考文献 第7章 实数连续性(完备性)定理 7.1 实数连续性定理的历史演变 7.2 实数连续性定理的内容与证明 7.2.1 确界存在定理及其证明 7.2.2 单调有界定理及其证明 7.2.3 柯西收敛准则及其证明 7.2.4 区间套定理及其证明 7.2.5 聚点定理及其证明 7.2.6 致密性定理及其证明 7.2.7 有限覆盖定理及其证明 7.3 实数连续性定理的相关内容分析 7.3.1 实数连续性定理的条件与结论 7.3.2 实数连续性定理的内在联系及等价性 7.3.3 实数连续性定理所提供的数学方法 7.3.4 实数连续性定理所提供的工具 7.4 实数连续性定理的推广 7.4.1 确界存在定理的推广 7.4.2 单调有界定理的推广 7.4.3 柯西收敛准则的推广 7.4.4 区间套定理的推广 7.4.5 聚点定理的推广 7.4.6 致密性定理的推广 7.4.7 有限覆盖定理的推广 7.5 实数连续性定理的应用 7.5.1 确界存在定理的应用 7.5.2 单调有界定理的应用 7.5.3 柯西收敛准则的应用 7.5.4 区间套定理的应用 7.5.5 聚点定理的应用 7.5.6 致密性定理的应用 7.5.7 有限覆盖定理的应用 参考文献 总参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值