机器学习
、寄生于黑暗中的光,
初学机器学习、深度学习,java,有错的地方请指正
展开
-
频率派线性回归和贝叶斯线性回归比较
一、频率派线性回归 1、单变量的线性回归 数据集为最简单的一种情形,一个一维输入对应一个一维输出,所以训练数据集可以表示为如下: (x1,t1),(x2,t2),,,,,(xn,tn)一共N个数据(x_1,t_1),(x_2,t_2),,,,,(x_n,t_n)一共N个数据(x1,t1),(x2,t2),,,,,(xn,tn)一共N个数据 单变量线性回归的模型: y=θ0+θ1∗xy=\theta_0+\theta_1*xy=θ0+θ1∗x 所以说我们的目标就是,找到合适的θ\thetaθ使原创 2020-11-17 23:24:16 · 439 阅读 · 0 评论 -
GMM和EM算法详解
混合高斯模型和EM算法 一、单个一维高斯参数学习 数据集X={x1,x2.......xNx_1,x_2.......x_Nx1,x2.......xN},参数为θ={μ,σ2σ^2σ2},图像为: 一维高斯函数的分布如下所示: p(x)=12πσexp(12σ2(x−μ)2)(1.1) \begin{aligned} p(x)=\frac{1}{\sqrt {2π}σ}exp(\frac{1}{2σ^2}(x-μ)^2) \tag{1.1}\\ \end{aligned} p(x)=2π.原创 2020-11-17 21:05:49 · 590 阅读 · 0 评论