GMM和EM算法详解

本文详细介绍了混合高斯模型(GMM)和期望最大化(EM)算法。从单个一维高斯模型的参数学习开始,讨论了多维高斯分布及其最大似然估计。接着,引入混合高斯模型,用于复杂数据分布的建模,特别是无监督学习场景。最后,详细解释了EM算法的E-step和M-step,证明了其收敛性,并展示了如何使用EM算法估计GMM的参数。
摘要由CSDN通过智能技术生成


混合高斯模型和EM算法


一、单个一维高斯参数学习

  数据集X={ x 1 , x 2 . . . . . . . x N x_1,x_2.......x_N x1,x2.......xN},参数为θ={μ, σ 2 σ^2 σ2},图像为:

在这里插入图片描述

  一维高斯函数的分布如下所示:

p ( x ) = 1 2 π σ e x p ( 1 2 σ 2 ( x − μ ) 2 ) (1.1) \begin{aligned} p(x)=\frac{1}{\sqrt {2π}σ}exp(\frac{1}{2σ^2}(x-μ)^2) \tag{1.1}\\ \end{aligned} p(x)=2π σ1exp(2σ21(xμ)2)(1.1)

  我们通过极大似然法来求解高斯分布的参数θ,即μ和 σ 2 σ^2 σ2

  我们可以通过数据集直接得到log似然函数:

P ( X ∣ θ ) = ∑ i = 1 N l o g 1 2 π σ e x p ( 1 2 σ 2 ( x i − μ ) 2 ) = ∑ i = 1 N ( − 1 2 l o g ( 2 π ) − l o g σ − 1 2 σ 2 ( x i − μ ) 2 ) (1.2) \begin{aligned} P(X|θ)=&\displaystyle\sum_{i=1}^{N} log\frac{1}{\sqrt {2π}σ}exp(\frac{1}{2σ^2}(x_i-μ)^2) \\ &=\displaystyle\sum_{i=1}^{N} (-\frac{1}{2}log(2π)-logσ-\frac{1}{2σ^2}(x_i-μ)^2)\tag{1.2} \end{aligned} P(Xθ)=i=1Nlog2π σ1exp(2σ21(xiμ)2)=i=1N(21log(2π)logσ2σ21(xiμ)2)(1.2)

  得到了对数似然函数的表达式,我们就可以根据求导为零得到函数的最优解,并且解出参数的最优值。

  例:我们这边求一个μ。

∂ P ( X ∣ θ ) ∂ μ = ∑ i = 1 N ( x i − μ ) = 0 (1.3) \begin{aligned} \frac{\partial P(X|θ)}{\partial μ}=\displaystyle\sum_{i=1}^{N}(x_i-μ)=0 \tag{1.3}\\ \end{aligned} μP(Xθ)=i=1N(xiμ)=0(1.3)

  解出

μ = ∑ i = 1 N x i N (1.4) \begin{aligned} μ=\frac{\displaystyle\sum_{i=1}^{N}x_i}{N} \tag{1.4}\\ \end{aligned} μ=Ni=1Nxi(1.4)

二、单个D维高斯分布的参数求解问题

  数据集X={ x 1 , x 2 . . . . . . . x N x_1,x_2.......x_N x1,x2.......xN},参数为θ={μ, Σ \Sigma Σ},图像为:

  我这边只给出2维的高斯分布图,再高维的不能进行可视化了
在这里插入图片描述

  D维高斯函数的分布如下所示:

p ( x ) = 1 ( 2 π ) D 2 ∣ Σ ∣ 1 2 e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) (2.1) \begin{aligned} p(x)=\frac{1}{(2π)^\frac{D}{2}|\Sigma|^\frac{1}{2}}exp(-\frac{1}{2}(x-μ)^T\Sigma^{-1}(x-μ)) \tag{2.1}\\ \end{aligned} p(x)=(2π)2DΣ211exp(21(xμ)TΣ1(xμ))(2.1)

  我们通过极大似然法来求解高斯分布的参数θ,即μ和 Σ \Sigma Σ

  首先写出似然函数:

P ( X ∣ θ ) = ∏ i = 1 N p ( x i ∣ θ ) \begin{aligned} P(X|θ)=\displaystyle\prod_{i=1}^{N} p(x_i|θ) \end{aligned} P(Xθ)=i=1Np(xiθ)

  他所对应的对数似然函数为:

P ( X ∣ θ ) = ∑ i = 1 N l o g p ( x i ∣ θ ) (2.2) \begin{aligned} P(X|θ)=\displaystyle\sum_{i=1}^{N} logp(x_i|θ) \tag{2.2}\\ \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值