LIS模板题(Longest Ordered Subsequence)

LIS模板题(Longest Ordered Subsequence)

poj-2533

给出一个序列,求出这个序列的最长上升子序列。

序列A的上升子序列B定义如下:

B为A的子序列
B为严格递增序列
Input
第一行包含一个整数n,表示给出序列的元素个数。

第二行包含n个整数,代表这个序列。
1 <= N <= 1000
Output
输出给出序列的最长子序列的长度。

Sample Input
7
1 7 3 5 9 4 8
Sample Output
4


#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
using namespace std;
#define N 1001
int a[N];
int l[N];
int main()
{
    int i, n, j, max = 0;
    cin >> n;
    for (i = 0; i < n; i++)
        cin >> a[i];
    memset(l, 0, sizeof(l));

    l[0] = 1;
    for (i = 1; i < n; i++)
    {
        l[i] = 1;
        for (j = 0; j < i; j++)
            if (a[j] < a[i] && l[j] >= l[i])
                l[i] = l[j] + 1;
    }
    //这里注意下,在求的时候l[i]的意思是:以a[i]结尾的最长上升子序列。
    //但是,整个串的最长公共子序列可能不是以a[i]结尾。所以要遍历结尾,取最大值
    for (i = 0; i < n; i++)
        if (l[i] > max)
            max = l[i];
    cout << max << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值