tensorflow安装过程及一些问题的解决

在Windows环境下,使用Anaconda2(64位)安装TensorFlow的详细步骤,包括环境配置、版本选择、问题排查及解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**目的:**在已安装anaconda的前提下,安装TensorFlow
**安装基础:**Windows环境、anaconda2(64位)
说明:因为在安装tensorflow的过程中出现了很多的问题,在网上搜了很多的方法,却大多数都失败了,几经波折才最终安装成功,因此把整个安装过程整理出来供大家参考,也是给自己留个备份。所有参考链接也附在了下面,感谢这些大神们的教程~

安装过程:

(参考:添加链接描述
(1)查看环境。打开Anaconda Prompt,输入:conda info --envs,查看已经安装了的环境,在没安装TensorFlow前,此处应该没有TensorFlow环境
在这里插入图片描述
(2)查看python可安装版本。输入:conda search --full-name python,检查目前有哪些版本的python可以安装。我之前试过2.7、3.8版本,都出了错,后来在网上搜了下,发现Windows系统建议安装3.5版,链接里的博主也安装的3.5,我尝试之后发现3.5版本没有报错
在这里插入图片描述
(3)安装python。输入:conda create --name tensorflow python=3.5,此处跟你电脑上已经有的python版本没有关系,只是为TensorFlow服务的。例如我的电脑上因为安装anaconda,所以自动带了2.7版本的Python,后期还稀里糊涂地装了3.8版本,但是这里并没有影响
(4)激活环境。输入:activate tensorflow,进入TensorFlow环境,激活成功后,会发现新的一行命令已经从base变为了tensorflow,此时再查看环境,就会显示有TensorFlow了
在这里插入图片描述
(5)查看已安装python版本。进入TensorFlow环境后,输入:python --version,查看该环境下的版本,就是我们上面安装的3.5版本
在这里插入图片描述
(6)安装TensorFlow。上面只是配置了环境,接下来是安装真正的TensorFlow。输入:activate tensorflow,进入环境,再输入:conda search --full-name tensorflow,出现可安装的所有TensorFlow版本,对应已安装的python版本查看Bulid一栏,带有py35的就是python3.5可以选择的版本,建议尽量选择低点的。链接里博主是推荐的1.1和1.2的,但是我试了下发现都不行,因为现在这两个版本已经没有了(图里也没有给出来这两个版本),因此对照build一栏的提示后,我选择了1.9.0。输入:pip install tensorflow==1.9.0
在这里插入图片描述
(7)检查。输入:import tensorflow as tf,检查是否安装成功。发生了错误。
尝试在tensorflow环境下输入:Spyder,进入编译器(此时发现左上角显示Python版本不是3.5,就已经说明有问题了),在IPython Consloe中输入:import tensorflow as tf,显示:“ModuleNotFoundError: No module named ‘tensorflow’”,说明没有安装成功
又尝试进入Anaconda Navigator,选择tensorflow环境,想安装Spyder,发现安装不上。此时发现虽然所有程序里显示有Spyder(tensorflow),点击却没有反应。
在这里插入图片描述

解决问题:

(参考:添加链接描述
在Anaconda Prompt中输入:activate tensorflow,激活tensorflow环境,再输入:conda install spyder,安装tensorflow下的spyder。
安装完成后,有三种进入Spyder的方法。
① Anaconda Prompt中输入:activate tensorflow,再输入:spyder
② 启动anaconda navigator,环境选择tensorflow,再回到home,点击Spyder下的Launch
③ 直接通过“D:\Program\Anaconda3\envs\tensorflow\Scripts”进入Anaconda3中tensorFlow环境,找到“spyder.exe”进入Spyder
(8)重新验证。按上述方法打开Spyder(此时左上角的python版本成功变为3.5),
在这里插入图片描述
在IPython Consloe中输入import tensorflow as tf,出现错误:

D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
D:\Anacoda\Anaconda\envs\xx\lib\site-packages\tensorflow\python\framework\dtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])

在网上找了找错误原因,最终找到了答案是由于numpy版本过高(高于1.17)
解决方法:(参考:添加链接描述
① Win+R打开面板,输入cmd
② 输入:activate tensorflow
③ 输入:pip install numpy==1.16.0
安装结束后,进入Spyder,在IPython Consloe中输入import tensorflow as tf,出现以下界面:
在这里插入图片描述
安装成功。

### 使用OpenCV实现视觉引导 #### 定义视觉引导的概念 视觉引导是指利用计算机视觉技术来指导机器人或其他自动化设备完成特定任务的过程。这通常涉及目标检测、跟踪以及路径规划等功能。 #### 实现方法 对于使用OpenCV进行视觉引导的应用开发而言,主要步骤包括但不限于: - **环境搭建** 需要先确保已经正确配置好了C++或Python的编程环境,并成功安装了OpenCV库[^1]。如果选择的是Python,则可以按照如下方式安装`opencv-python`包: ```bash pip install opencv-python ``` - **读取并预处理图像数据** 获取摄像头输入或者加载本地图片作为待处理的数据源。接着可能还需要做一些诸如灰度化转换、噪声去除之类的预处理工作以便后续操作更加顺利。 ```python import cv2 def preprocess_image(image_path): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # 加载为灰色模式 blurred_img = cv2.GaussianBlur(img, (5, 5), 0) # 应用高斯模糊减少噪音 return blurred_img ``` - **特征提取与匹配** 利用SIFT/SURF/ORB等算法从场景中找到具有代表性的关键点及其描述符,再通过FLANN或BFMatcher等方式寻找最佳配对关系从而确定物体位置变化情况。 ```python orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(trainImage, None) kp2, des2 = orb.detectAndCompute(queryImage, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1,des2) matches = sorted(matches, key=lambda x:x.distance) ``` - **计算位姿变换矩阵** 当已知两组对应的关键点坐标时,就可以借助于PnP问题求解器得到相机相对于被观测对象的姿态参数(旋转和平移向量)。这部分涉及到较为复杂的几何运算,在此仅给出简化版伪代码示意: ```python retval, rvec, tvec = cv2.solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) ``` - **绘制辅助线指示方向** 基于上述获得的信息可以在原图上画出箭头或者其他图形帮助理解当前状态下的运动趋势。 ```python cv2.arrowedLine(frame,(int(x_start), int(y_start)),(int(x_end), int(y_end)),color=(0,255,0)) ``` 以上就是关于怎样运用OpenCV开展视觉导航工作的基本流程介绍[^2]。值得注意的是具体实施过程中还需考虑很多细节因素比如光照条件影响、遮挡物干扰等问题都需要妥善解决才能达到理想效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值