深度学习第P6周:VGG-16算法-Pytorch实现人脸识别

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

🍺要求:

  1. 保存训练过程中的最佳模型权重
  1. 调用官方的VGG-16网络框架

🍻拔高(可选):

  1. 测试集准确率达到60%(难度有点大,但是这个过程可以学到不少)
  1. 手动搭建VGG-16网络框架

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:Pytorch
    • torch==2.3.1+cu188
    • torchvision==0.18.1+cu118

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU 

import torch
import warnings

warnings.filterwarnings("ignore")

device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

运行结果:

device(type='cpu')

2. 导入数据

import os,PIL,random,pathlib

data_dir=r'D:\THE MNIST DATABASE\P6-data'
data_dir=pathlib.Path(data_dir)

data_paths=list(data_dir.glob('*'))
classNames=[str(path).split("\\")[3] for path in data_paths]
classNames

 运行结果:

['Angelina Jolie',
 'Brad Pitt',
 'Denzel Washington',
 'Hugh Jackman',
 'Jennifer Lawrence',
 'Johnny Depp',
 'Kate Winslet',
 'Leonardo DiCaprio',
 'Megan Fox',
 'Natalie Portman',
 'Nicole Kidman',
 'Robert Downey Jr',
 'Sandra Bullock',
 'Scarlett Johansson',
 'Tom Cruise',
 'Tom Hanks',
 'Will Smith']

3. 测试获取到的图片

import matplotlib.pyplot as plt
from PIL import Image
import os

#指定图片文件夹路径
image_folder=r'D:\THE MNIST DATABASE\P6-data\Angelina Jolie'

#获取文件夹中的所有图像文件
image_files=[f for f in os.listdir(image_folder) if f.endswith((".jpg",".png",".jpeg"))]
#创建matplotlib图像
fig,axes=plt.subplots(3,8,figsize=(16,6))

#使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):
    img_path=os.path.join(image_folder,img_file)
    img=Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

#显示图像
plt.tight_layout()
plt.show()

 运行结果:

4. 图像预处理

import torchvision
from torchvision import transforms,datasets
train_transforms=transforms.Compose([
    transforms.Resize([224,224]),    #将输入图片resize成统一尺寸
    transforms.RandomHorizontalFlip(),   #随机水平翻转
    transforms.ToTensor(),       #将PIL Image转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(      #标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485,0.456,0.406],
        std=[0.229,0.224,0.225])
])

total_data=datasets.ImageFolder(r'D:\THE MNIST DATABASE\P6-data',transform=train_transforms)
total_data

 运行结果:

Dataset ImageFolder
    Number of datapoints: 1800
    Root location: D:\THE MNIST DATABASE\P6-data
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

将数据类别映射到对应的索引上

total_data.class_to_idx

运行结果:

{'Angelina Jolie': 0,
 'Brad Pitt': 1,
 'Denzel Washington': 2,
 'Hugh Jackman': 3,
 'Jennifer Lawrence': 4,
 'Johnny Depp': 5,
 'Kate Winslet': 6,
 'Leonardo DiCaprio': 7,
 'Megan Fox': 8,
 'Natalie Portman': 9,
 'Nicole Kidman': 10,
 'Robert Downey Jr': 11,
 'Sandra Bullock': 12,
 'Scarlett Johansson': 13,
 'Tom Cruise': 14,
 'Tom Hanks': 15,
 'Will Smith': 16}

5. 划分数据集

train_size=int(0.8*len(total_data))  #划分训练集
test_size=len(total_data)-train_size   #划分测试集
train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

运行结果:

(<torch.utils.data.dataset.Subset at 0x1ee85831a10>,
 <torch.utils.data.dataset.Subset at 0x1ee85cff1d0>)

查看训练集和测试集的数量:

train_size,test_size

 运行结果:

(1440, 360)

6. 加载数据集

train_dl=torch.utils.data.DataLoader(
    train_dataset,batch_size=32,shuffle=True)
test_dl=torch.utils.data.DataLoader(
    test_dataset,batch_size=32,shuffle=True)

 显示测试集的情况:

for x,y in test_dl:
    print("Shape of x [N,C,H,W]:",x.shape)
    print("Shape of y:",y.shape,y.dtype)
    break

运行结果:

Shape of x [N,C,H,W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64

二、调用官方的VGG-16模型

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由13个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

VGG-16模型结构

from torchvision.models import vgg16
import torch.nn as nn

device="cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

#加载预训练模型,并对模型进行微调
#model=vgg16(pretrained=True).to(device)
model=vgg16(pretrained=False).to(device)

for param in model.parameters():
    param.requires_grad=False #冻结模型的参数,这样在训练时只训练最后一层的参数
    
#修改calssifier模块的第六层,即:(6): Linear(in_features=4096, out_features=17, bias=True)
model.classifier._modules['6']=nn.Linear(4096,len(classNames))#修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)
model

运行结果:

Using cpu device
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)

三、训练模型

1. 编写训练函数

optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

#训练循环
def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset)   #训练集的大小
    num_batches=len(dataloader)    #批次数目,(size/batch_size,向上取整)
    
    train_loss,train_acc=0,0   #初始化训练损失和正确率
    
    for x,y in dataloader:    #获取图片及其标签
        x,y=x.to(device),y.to(device)
        
        #计算预测误差
        pred=model(x)    #网络输出
        loss=loss_fn(pred,y)   #计算网络输出与真实值之间的差距
        
        #反向传播
        optimizer.zero_grad()   #grad属性归零
        loss.backward()   #反向传播
        optimizer.step()   #每一步自动更新
        
        #记录acc与loss
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss+=loss.item()
        
    train_acc/=size
    train_loss/=num_batches
    
    return train_acc,train_loss

pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
(pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
.type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
.sum()是对数组中的元素求和,计算出预测正确的样本数量。
.item()将求和结果转换为标量值,以便在 Python 中使用或打印。
(pred.argmax(1) == y).type(torch.float).sum().item() 表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。 

2. 编写测试函数

与训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器 

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)   #测试集的大小
    num_batches=len(dataloader)   #批次数目
    test_loss,test_acc=0,0
    
    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)
            
            #计算loss
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)
            
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
            
    test_acc/=size
    test_loss/=num_batches
    
    return test_acc,test_loss

3. 设置动态学习率

'''
def adjust_learning_rate(optimizer,epoch,start_lr):
    #每2个epoch衰减到原来的0.98
    lr=start_lr*(0.92**(epoch//2))
    for param_group in optimizer.param_group:
        param_group['lr']=lr
        
learn_rate=1e-4   #初始学习率
optimizer=torch.optim.SGD(model.parameters(),lr=learn_rate)'''

调用官方动态学习率接口

与上面方法是等价的

#调用官方动态学习率接口时使用
learn_rate=1e-4
lambda1=lambda epoch:0.92**(epoch//4)
optimizer=torch.optim.SGD(model.parameters(),lr=learn_rate)
scheduler=torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) #选定调整方法

4. 正式训练

import copy

loss_fn=nn.CrossEntropyLoss()   #创建损失函数
epochs=40

train_loss=[]
trainaa_acc=[]
test_loss=[]
test_acc=[]

best_acc=0  #设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    #更新学习率(使用自定义学习率时使用)
    #adjust_learning_rate(optimizer,epoch,learn_rate)
    
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,optimizer)
    scheduler.step()  #更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)
    
    #保存最佳模型到best_model
    if epoch_test_acc>best_acc:
        best_acc=epoch_test_acc
        best_model=copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前学习率
    lr=optimizer.state_dict()['param_groups'][0]['lr']
    
    template=('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,
                          epoch_test_acc*100,epoch_test_loss,lr))
    
#保存最佳模型到文件中
#保存的参数文件名
PATH=r'C:\Users\Administrator\PycharmProjects\pytorchProject1\第P6周:VGG-16算法-Pytorch实现人脸识别'
torch.save(model.state_dict(),PATH)

print('Done')

 运行结果:

Epoch: 1,Train_acc:6.5%,Train_loss:2.928,Test_acc:5.8%,Test_loss:2.811,Lr:1.00E-04
Epoch: 2,Train_acc:8.5%,Train_loss:2.872,Test_acc:6.4%,Test_loss:2.787,Lr:9.20E-05
Epoch: 3,Train_acc:7.5%,Train_loss:2.849,Test_acc:8.6%,Test_loss:2.754,Lr:9.20E-05
Epoch: 4,Train_acc:9.0%,Train_loss:2.800,Test_acc:8.9%,Test_loss:2.738,Lr:8.46E-05
Epoch: 5,Train_acc:10.6%,Train_loss:2.802,Test_acc:10.6%,Test_loss:2.700,Lr:8.46E-05
Epoch: 6,Train_acc:10.6%,Train_loss:2.769,Test_acc:13.1%,Test_loss:2.687,Lr:7.79E-05
……
Epoch:36,Train_acc:17.4%,Train_loss:2.528,Test_acc:21.9%,Test_loss:2.480,Lr:2.23E-05
Epoch:37,Train_acc:18.7%,Train_loss:2.508,Test_acc:21.1%,Test_loss:2.482,Lr:2.23E-05
Epoch:38,Train_acc:16.7%,Train_loss:2.536,Test_acc:21.4%,Test_loss:2.476,Lr:2.05E-05
Epoch:39,Train_acc:18.4%,Train_loss:2.510,Test_acc:20.8%,Test_loss:2.470,Lr:2.05E-05
Epoch:40,Train_acc:18.8%,Train_loss:2.516,Test_acc:21.7%,Test_loss:2.478,Lr:1.89E-05
Done

由上可知,未能达到满意准确率。考虑调整模型的全连接层的三层 

model.classifier._modules['0']=nn.Linear(25088,1024)
model.classifier._modules['3']=nn.Linear(1024,128)
model.classifier._modules['6']=nn.Linear(128,len(classNames))

同时更改优化器为Adam, 再次运行后结果如下:

Epoch: 1,Train_acc:16.2%,Train_loss:2.641,Test_acc:29.2%,Test_loss:2.311,Lr:1.00E-04
Epoch: 2,Train_acc:29.3%,Train_loss:2.195,Test_acc:41.7%,Test_loss:1.999,Lr:9.20E-05
Epoch: 3,Train_acc:42.2%,Train_loss:1.801,Test_acc:45.6%,Test_loss:1.747,Lr:9.20E-05
Epoch: 4,Train_acc:50.1%,Train_loss:1.533,Test_acc:49.7%,Test_loss:1.598,Lr:8.46E-05
Epoch: 5,Train_acc:57.8%,Train_loss:1.317,Test_acc:53.9%,Test_loss:1.502,Lr:8.46E-05
Epoch: 6,Train_acc:66.5%,Train_loss:1.143,Test_acc:53.9%,Test_loss:1.414,Lr:7.79E-05
Epoch: 7,Train_acc:73.1%,Train_loss:0.916,Test_acc:55.3%,Test_loss:1.341,Lr:7.79E-05
Epoch: 8,Train_acc:76.7%,Train_loss:0.802,Test_acc:56.7%,Test_loss:1.307,Lr:7.16E-05
Epoch: 9,Train_acc:82.0%,Train_loss:0.668,Test_acc:57.5%,Test_loss:1.269,Lr:7.16E-05
Epoch:10,Train_acc:82.8%,Train_loss:0.603,Test_acc:58.9%,Test_loss:1.320,Lr:6.59E-05
Epoch:11,Train_acc:87.4%,Train_loss:0.490,Test_acc:60.6%,Test_loss:1.277,Lr:6.59E-05
Epoch:12,Train_acc:89.2%,Train_loss:0.423,Test_acc:60.8%,Test_loss:1.262,Lr:6.06E-05
Epoch:13,Train_acc:90.9%,Train_loss:0.367,Test_acc:62.2%,Test_loss:1.174,Lr:6.06E-05
Epoch:14,Train_acc:93.0%,Train_loss:0.325,Test_acc:60.6%,Test_loss:1.184,Lr:5.58E-05
Epoch:15,Train_acc:93.3%,Train_loss:0.299,Test_acc:64.7%,Test_loss:1.110,Lr:5.58E-05
Epoch:16,Train_acc:95.1%,Train_loss:0.261,Test_acc:63.6%,Test_loss:1.180,Lr:5.13E-05
Epoch:17,Train_acc:95.4%,Train_loss:0.223,Test_acc:63.3%,Test_loss:1.187,Lr:5.13E-05
Epoch:18,Train_acc:96.0%,Train_loss:0.208,Test_acc:60.8%,Test_loss:1.196,Lr:4.72E-05
Epoch:19,Train_acc:96.7%,Train_loss:0.197,Test_acc:64.7%,Test_loss:1.122,Lr:4.72E-05
Epoch:20,Train_acc:96.9%,Train_loss:0.183,Test_acc:63.6%,Test_loss:1.162,Lr:4.34E-05
Epoch:21,Train_acc:97.6%,Train_loss:0.159,Test_acc:64.4%,Test_loss:1.206,Lr:4.34E-05
Epoch:22,Train_acc:97.2%,Train_loss:0.147,Test_acc:66.1%,Test_loss:1.148,Lr:4.00E-05
Epoch:23,Train_acc:97.6%,Train_loss:0.139,Test_acc:63.6%,Test_loss:1.138,Lr:4.00E-05
Epoch:24,Train_acc:98.2%,Train_loss:0.128,Test_acc:65.3%,Test_loss:1.153,Lr:3.68E-05
Epoch:25,Train_acc:98.5%,Train_loss:0.105,Test_acc:66.1%,Test_loss:1.146,Lr:3.68E-05
Epoch:26,Train_acc:97.7%,Train_loss:0.112,Test_acc:64.4%,Test_loss:1.176,Lr:3.38E-05
Epoch:27,Train_acc:99.0%,Train_loss:0.106,Test_acc:62.8%,Test_loss:1.238,Lr:3.38E-05
Epoch:28,Train_acc:99.1%,Train_loss:0.096,Test_acc:65.3%,Test_loss:1.131,Lr:3.11E-05
Epoch:29,Train_acc:99.0%,Train_loss:0.093,Test_acc:66.9%,Test_loss:1.152,Lr:3.11E-05
Epoch:30,Train_acc:99.0%,Train_loss:0.091,Test_acc:64.2%,Test_loss:1.172,Lr:2.86E-05
Epoch:31,Train_acc:99.0%,Train_loss:0.082,Test_acc:65.8%,Test_loss:1.171,Lr:2.86E-05
Epoch:32,Train_acc:99.1%,Train_loss:0.079,Test_acc:66.4%,Test_loss:1.160,Lr:2.63E-05
Epoch:33,Train_acc:99.3%,Train_loss:0.073,Test_acc:65.0%,Test_loss:1.206,Lr:2.63E-05
Epoch:34,Train_acc:99.2%,Train_loss:0.075,Test_acc:65.8%,Test_loss:1.188,Lr:2.42E-05
Epoch:35,Train_acc:99.2%,Train_loss:0.067,Test_acc:64.4%,Test_loss:1.174,Lr:2.42E-05
Epoch:36,Train_acc:99.2%,Train_loss:0.064,Test_acc:64.4%,Test_loss:1.249,Lr:2.23E-05
Epoch:37,Train_acc:99.4%,Train_loss:0.063,Test_acc:65.3%,Test_loss:1.163,Lr:2.23E-05
Epoch:38,Train_acc:99.4%,Train_loss:0.066,Test_acc:66.4%,Test_loss:1.218,Lr:2.05E-05
Epoch:39,Train_acc:99.4%,Train_loss:0.057,Test_acc:64.4%,Test_loss:1.213,Lr:2.05E-05
Epoch:40,Train_acc:99.2%,Train_loss:0.063,Test_acc:65.3%,Test_loss:1.235,Lr:1.89E-05
Done

从结果看,达到了比较满意的状态。 

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")   #忽略警告信息
plt.rcParams['font.sans-serif']=['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False   #用来正常显示负号
plt.rcParams['figure.dpi']=300   #分辨率

epochs_range=range(epochs)
plt.figure(figsize=(12,3))

plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label='Training Accuracy')
plt.plot(epochs_range,test_acc,label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label='Training Loss')
plt.plot(epochs_range,test_loss,label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')

plt.show()

 未修改前模型运行结果图:

 修改后模型运行结果图:

2. 指定图片进行预测 

建立预测模型:

from PIL import Image

classes=list(total_data.class_to_idx)

def predict_one_image(image_path,model,transform,classes):
    test_img=Image.open(image_path).convert('RGB')
    plt.imshow(test_img)   #展示预测的图片
    
    test_img=transform(test_img)
    img=test_img.to(device).unsqueeze(0)
    
    model.eval()
    output=model(img)
    
    _,pred=torch.max(output,1)
    pred_class=classes[pred]
    print(f'预测结果是:{pred_class}')

 预测某张图片:

#预测训练集中的某张照片
predict_one_image(image_path=r'D:\THE MNIST DATABASE\P6-data\Tom Cruise\001_08212dcd.jpg',
                  model=model,transform=train_transforms,classes=classes)

 运行结果:

预测结果是:Tom Cruise

 3. 模型评估

best_model.eval()
epoch_test_acc,epoch_test_loss=test(test_dl,best_model,loss_fn)
epoch_test_acc,epoch_test_loss

 运行结果:

(0.6555555555555556, 1.2302758047978084)

五、个人总结

1、本周无意间安装上了GPU版本,跑起来确实速度提升十分明显。可能是放假导致网速提升的原因。

2、学习了VGG16的总结结构及每一步的运行方式,在结果不满意的状态下修改了VGG16的全连接层及优化器,最后得出比较满意的结果。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值