机器学习:Gradient-based Hyperparameter Optimization through Reversible Learning

Abstract:

  • Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.

根据摘要:

  • 目前背景:目前的学习算法难以解决调整超参数的问题
  • 技术方法:作者在整个训练过程中使用逆向导数链式法则和交错验证法,训练所有超参数的精确梯度,而作者通过逆向随机梯度下降和动量项来精确计算梯度.
  • 问题解决:借助这些精确梯度,我们可以优化上千个超参数(包括神经网络的其他参数,如步长等).

1 :Introduction:

  • Machine learning systems abound with hyperparameters.
  • Choosing the best hyperparameters is both crucial and frustratingly difficult.

机器学习中存在大量的超参数,选择最优超参数至关重要且极其困难.

The current gold standard for hyperparameter selection is gradient-free model-based optimization (Snoek et al., 2012; Bergstra et al., 2011; 2013; Hutter et al., 2011). However, in general they are not able to effectively optimize more than 10 to 20 hyperparameters.

当前的超参数选择方法中的黄金法则是基于无梯度模型的优化,在2011-2013年的工作给出,但是他们得出的方法,不能有效的优化10-20个以上的超参数.

Why not use gradients? The problem with taking gradients with respect to hyperparameters is that computing the validation loss requires an inner loop of elementary optimization, which makes na¨ıve reverse-mode differentiation infeasible from a memory perspective. Section 2 describes this problem and proposes a solution, which is the main technical contribution of this paper.

若采用梯度算法,在损失计算验证时需要一个内部循环的基本优化,这会使得内存被占满,从而不可行.文章的第2部分将对此问题展开介绍.

Gaining access to gradients

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值