机器学习笔记
文章平均质量分 64
一枚嘉应子
这个作者很懒,什么都没留下…
展开
-
【支持向量机学习笔记】
支持向量机(svm)原创 2023-03-06 10:46:57 · 166 阅读 · 0 评论 -
神经网络计算量及参数量
卷积 + 全连接 + 计算量 + 参数量 + 卷积公式原创 2022-06-30 00:00:00 · 192 阅读 · 0 评论 -
【粒子滤波学习笔记】
算法描述实现代码1.debug代码。[1]算法分析1.[2] [3]有分析。资料引用[1]GitHub:https://github.com/mjl/particle_filter_demo[2]CSDN:https://blog.csdn.net/KYJL888/article/details/105360005[3]CSDN:https://blog.csdn.net/xuzhexing/article/details/90729390此算法笔记会在CSDN、知乎、b站及公众号同步更原创 2022-04-02 21:30:00 · 130 阅读 · 0 评论 -
【卡尔曼滤波笔记】
卡尔曼滤波保姆级学习笔记原创 2022-03-23 23:00:00 · 4616 阅读 · 0 评论 -
【PCA学习笔记】
算法描述1.算法过程:①中心化(减去均值)②计算协方差矩阵③计算特征值及特征向量④降维转换(原数据点乘特征向量)知识储备1.数据降维必要性看维度灾难。[4]2.协方差矩阵。[2]3.特征值/向量。[3]举个栗子1.[6]有详尽的例子。2.样本中心化到协方差矩阵过程:设中心化后并转置的样本为,共10个样本数据,每个数据有3个维度。实现代码1.三维数据降到二维可视化,颜色对应,数据分布大致一致。import numpy as npimport matplotlib.pyplo原创 2022-01-21 23:45:00 · 1030 阅读 · 0 评论 -
【AdaBoost学习笔记】
算法描述1.上文随机森林中介绍了Bootstraping(构造多个子数据集,每个数据集不一样),本篇AdaBoost则是使用同一个数据集(每个数据有权重)通过串行训练多个弱分类器。在训练过程中,当前弱分类器中数据的权重会根据上一个弱分类器的错误率进行调节,最终集合所有弱分类器的结果进行表决,得到一个强分类的结果。[2]中提供一个更生动的描述,推荐阅读。知识储备举个栗子1.先用伪代码讲解:初始化D/第一个循环定义构建多少个弱分类器,若当前分类器错误率为零则不再构建其他分类器/for 弱分类器:原创 2022-01-15 22:00:00 · 212 阅读 · 0 评论 -
【基于CART的随机森林学习笔记】
随机森林 + CART原创 2022-01-12 02:00:00 · 856 阅读 · 0 评论 -
【k-means学习笔记】
目录算法描述知识储备举个栗子实现代码算法分析资料引用算法描述1.问题假设:操场上有k个体育老师和k个班的学生,各班学生围着各自的老师在玩耍,现求各个老师的坐标。2.数据输入:所有学生的坐标位置,但不知道每个学生对应的老师是谁。3.算法过程:①随机选取k个坐标。②计算每个学生与k个老师的坐标距离并以距离为原则将此学生归类到最近的老师。③将所有学生归类完毕后,计算每个老师类中学生坐标的均值,并以此均值作为老师坐标的更新值。知识储备1.k-means算法不要求数据有标签(即不知道每个学生对应的老原创 2021-12-18 23:00:00 · 256 阅读 · 0 评论 -
【逻辑回归学习笔记】
算法描述1.逻辑回归要做的事就是寻找分界面实现二分类。2.问题假设:对一堆三角形和正方形分类。3.数据输入:已知正方形和三角形的坐标和标签。4.算法过程:知识储备1.分类和回归①分类的目标是预测一个离散型变量(e.g. 是/否,好/坏等)。②回归的目标是预测一个连续型变量(e.g. 温度37.0℃,光强1000mcd等)。③逻辑回归利用已知数据拟合一条分界线,进而利用这条分界线做二分类。2.Sigmoid公式如下:②异或问题异或逻辑是当输入不同时,输出真;反之输出假。在二维原创 2021-12-10 03:00:00 · 462 阅读 · 0 评论 -
【朴素贝叶斯学习笔记】
目录算法描述知识储备举个栗子实现代码算法分析资料引用算法描述1.朴素贝叶斯思想是使用条件概率公式计算类别概率并进行分类。注:朴素贝叶斯在[2]有较为完善的叙述,本篇笔者贡献仅为要点的整理与举例推理部分。十分建议大家读原文。2.问题假设:论坛的评论区有侮辱性评论,需要过滤掉此类评论。[2]3.数据输入:该论坛已有的评论文本及标签。4.算法过程:①将评论文本转换为向量。②计算侮辱类的条件概率、非侮辱类的条件概率并统计两类的占比。③根据②所得的三个数据计算新的评论文本的侮辱类的概率。原创 2021-12-10 02:30:00 · 662 阅读 · 0 评论 -
【决策树学习笔记】
目录算法描述知识储备举个栗子实现代码算法分析资料引用算法描述1.决策树的构造就是根据数据集最显著的特征划分子数据集以达到分类的目的。2.问题假设:银行需审查贷款申请候选人的资料进而决定是否放贷。3.数据输入:若干候选人的资料,包括4个特征[年龄,是否有工作,是否有房,信贷记录]和房贷标签[是/否]。4.算法过程:①对数据集标签的频率计算香农熵(经验熵)。②在每一维特征内,计算特征标签的条件熵。③香农熵减去条件熵即为这一维特征的信息增益。④根据最大一维特征的信息增益划分子数据集。知识储备原创 2021-12-04 14:47:01 · 522 阅读 · 0 评论 -
【kNN学习笔记】
目录前言算法描述知识储备举个栗子实现代码算法分析资料引用前言初学者接触机器学习难以入门的原因有以下几点:①资料解释不全,尤其是公式符号没有给出定义,导致读者雾里看花。②资料有误,论坛上部分帖子是发布者简单搬运,甚至有部分错误。③实践性不足,没有合理引导读者进行代码实现。笔者结合自己学习过程的痛点,将学习笔记分享出来。学习笔记包括以下六个模块:算法描述:具象化描述算法,表达该算法的思想。知识储备:此处会列出算法中使用到的小概念以帮助非理工科背景读者理解。举个例子:此处会使用简单的数据并结合原创 2021-12-01 22:58:38 · 1885 阅读 · 2 评论