Python基础学习 numpy&pandas

Python基础学习
numpy & pandas

mofan python 视频入门
目前还是为了作业在学习

用于数据分析,科学计算

import numpy as np	惯用写法
array = np.array([[1,2,3],
				 [2,3,4]])
print(array)
print(array.ndim)	矩阵维度(1,2,···)
print(array.shape)	矩阵形状(行列数)
print(array.size)	矩阵元素个数

创建array

import numpy as np
a = np.array([1,2,4])
print(a)			结果 数之间无逗号
a = np.array([1,2,4],dtype=np.int)	int 可以换成float
print(a.dtype)
import numpy as np
a = np.array([ [2,3,4],
						[4,5,6]])
print(a)    生成矩阵
b = np.zeros((3,4))
print(b)			生成3行4列的矩阵
c=np.ones((2,3),dtype=np.int16)
print(c)			2行3列的全为1的矩阵
d = np.empty((1,2))
print(a) 		生成一个几乎为0的矩阵
e = np.arange(10,20,2)	生成有序数列
print(e)
[10,12,14,16,18]
f = np.arange(12).reshape((3,4))
print(f)	生成3行4列0-11的矩阵
g = np.linspace(1,10,5)	
print(g)		生成线段,1-10的五个等距线段

numpy的基础运算和形式

import numpy as np
a = np.array([10,20,30,40])
b=np.arange(4)
print(a,b)
c=a-b,b**2,10*np.sin(a)
print(c)		矩阵加减乘除 同理,次方,叁角函数
print(b)
print(b<3)	生成一个列表(逐个判断)
c =np.array([[1,2],
					[0,3]])
d = np.arnge(4).reshape((2,2))
q=c*d   逐个相乘
q = np.dot(a,b) 或 c.dot(d) 	矩阵乘法
e = np.random.random((2,4))	随机生成一个矩阵
print(np.sum())	求和
print(np.sum(e,axis=1))	列数求和
print(np.sum(e,axis=0))	行数求和
print(np.max(e,axis=1))	列数,每列求最大值
print(np.min())		求最小值
print(np.max())

numpy基础运算2

import numpy as np
A = np.arange(1,13).reshape((3,4))
print(np.argmin(A))	生成最小值索引
print(np.mean(A))
print(A.mean())	计算矩阵平均值
print(np.median(A))		中位数	
print(np.cumsum(A))	累加,项数同
print(np.diff(A))		每两个数的差
print(np.nonzero(A))	生成两个数组构成数的索引
print(np.sort(A))	逐行排序
print(np.transpose(A))
print(A.T)				矩阵的转置
print(np.clip(A,min,max)	<5变为5,>9变为9
print(np.mean(A,aixs=0))	可以进行行列平均值计算
print(A)

暂且看到 第7个视频

numpy 索引

import numpy as np
A = np,arange(3,15)
print(A)	生成3-14的一维矩阵
print(A[3])
B = np,arange(3,15).reshape	 生成二维矩阵
print(B)
print(B[2])	
print(B[2:,]		行数索引,打印整行
print(B[:,1])	第一列
print(B[1,1:2])	第一行,第一例到第二列
print(B[1][1])	
print(B[1,1]		打印某个元素

for row in A:
	print(row)		迭代每一行的值
for column in A.T:
	print(column)	迭代每一列的值
print(A.flatten())	打印A转化为一个列表
for item in A.flat:
	print(item)	打印迭代器的值

numpy array合并

import numpy as np
A = np.array([1,2,3])
B = np.array([2,3,4])
C = np.vstack((A,B))
D = np.hstack((A,B))	#horizatal stack左右合并
print(np.vstack((A,B)))	#vertical stack上下合并成一个矩阵
print(A.shape,C.shape)
(3,) (2,3)
不可用transpose将横向数列变为竖向数列
print(A[np.newaxis,:].shape)
(1,3) 	行上加了一个维度
print(A[:,np.newaxis].shape)
(3,1)		列上加维度
A1= np.array([1,2,3])[:,np.newaxis]
B1 = np.array([2,3,4])[:,np.newaxis]
C = np.concatenate((A,B,B,A),axis=0)	多个合并

numpy array分割

import numpy as np
A = np.arange(12).reshape((3,4))
print(A)
print(np.split(A,2,axis=1)		按列分为两块
不能进行不等的分割
print(np.array_split(A,3,axis=1))		可进行不等分割,第一个array包含两列
print(np.vsplit(A,3))		纵向分割
print(np.hsplit(A,2))		横向分割

numpy array copy&deep copy

>>>import numpy as np
>>>a = np.arange(4)
>>>b=a
>>>b is a
True		改变a的同时,b也会改变,赋值传递;改变b,a也会改变,会相关联
>>>b = a.copy()	#deep copy	a,b不会相关联

mofvan numpy 就此结束

之后是pandas入门

>>>import pandas as pd
>>>import numpy as np
>>>s = pd.Series([1,3,6,np.nan,44,])	nan无穷
>>>s
>>>dates = pd.date_range('20190215',periods=6)
>>>dates	生成日期的序列
>>>df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']
>>>df1 = pd.DataFrame(np.arange.reshape((3,4)))
>>>df1
>>>df2 = pd.DataFrame(里面加上一个dict)
>>>df2.dtypes	返回每一列不同的数据形式
>>>df2.index	列的序号
>>>df2.columns	列的名字
>>>fd2.values		
>>>df.describe()		运算数字形式的和,乘积...
>>>df2.T		当成一个矩阵,转置
>>>df2.sort_index(axis=1,ascending=False)	列向,反序,
>>>df2.sort_values(by='E')	指定某列进行排列

pandas 选择数据

import pandas as pd
import numpy as np

dates = pd.date_range('20190101',periods=6)
df = pd.DateFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])		使用的数据

print(df['A'],df.A)			打印同样的两列数据
print(df[0:3],df['20190102','20190104'])		类似‘切片’操作
# select by label:loc		根据标签来选择
print(df.loc['20190102'])		
print(df.loc[:,['A','B']])		选择列,打印行数据
print(df.loc['20190102':,['A','B']])
# select by position:iloc
print(df.iloc[3])		第三行
print(df.iloc[3,1]	第三行第一位
print(df.iloc[3:5,1:3])	3-5行1-3列
print(df.iloc[[1,3,5],1:3])	逐个不连续筛选
# mixed selection:ix	综合上面两者
print(df.ix[:3,['A','C']])
# Boolean indexing		
print(df[df.A>8])			筛选

pandas 设置值,改变标签对应的值,位置

import pandas as pd
import numpy as np

dates = pd.date_range('20190101',periods=6)
df = pd.DateFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])		使用的数据

df.iloc[2,2] = 1111
df.loc['20190101','B']=2222
df[df.A>4] = 0
print(df)
df.A[df.A>4] = 0
print(df)
df.B[df.A>4] = 0
print(df)
df['F'] = np.nan		设置空行
df['F'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20190101',periods=6)
print(df)

pandas 处理丢失数据

import pandas as pd
import numpy as np

dates = pd.date_range('20190101',periods=6)
df = pd.DateFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])		使用的数据

df.iloc[0,1] = np.nan
df.iloc[1,2] = np.nan
print(df)
print(df.dropna(axis=0,how='any')) #how={'any','all'}	按照行列丢失,怎么样的方式
print(df.fillna(value=0))		填上丢失的数据,默认为0
print(df.isnull())		是否有确实数据
print(np.any(df.isnull()) == True) 是否包含True值,>=1,返回True	
导入导出,目录,读取数据

pandas 合并concatenating

import pandas as pd
import numpy as np
# concatenating

df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])
print(df1)
print(df2)
print(df3)
res = pd.concat([df1,df2,df3],axis=0)		竖向合并
print(res)
res = pd.concat([df1,df2,df3],axis=0,ignore_index=True)忽略index
print(res)
# join,['inner','outer']
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4])
print(df1)
print(df2)
res = pd.concat([df1,df2],join='outer')
print(res)			默认
res = pd.concat([df1,df2],join='inner',ignore=True)	合并相同的,忽略序号
# join_axes
res = pd.concat([df1,df2],axis=1,join_axes=[df1.index])		指定考虑index
print(res)
res = pd.concat([df1,df2],axis=1,)

# append
df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
res = df1.append(df2,ignore_index=True)
s1 = pd.Series([1,2,3,4],index=[['a','b','c','d']))

print(res)
df3 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])
res = df1.append([df2,df3]ignore_index=True)多个合并(行)

df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])
s1 = pd.Series([1,2,3,4],index=[['a','b','c','d'])
res = df1.append(s1,ignore_index=True)
print(res)			添加一个元素到最后

pandas 合并merge

merge 多种索引,key等合并
import pandas as pd
# merging two df by key/keys.(may be used in database)
left = pd.DataFrame({'key':['K0','K1','K2','K3'],
									'A':['A0','A1','A2','A3'],
									'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key':['K0','K1','K2','K3'],
									'C':['C0','C1','C2','C3'],
									'D':['D0','D1','D2','D3']})
print(left)
print(right)

res = pd.merge(left,right,on='key')
print(res)
# consider two key	
left = pd.DataFrame({'key1':['K0','K1','K2','K3'],
									'key2':['K0','K1','K2','K3'],
									'A':['A0','A1','A2','A3'],
									'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key1':['K0','K1','K2','K3'],
									'key2':['K0','K1','K2','K3'],
									'C':['C0','C1','C2','C3'],
									'D':['D0','D1','D2','D3']})
res = pd.merge(left,right,on=['key1','key2'],how='inner')	默认为inner,只合并相同的部分
# how = ['left','right','outer',inner']
print(res)						
res = pd.merge(left,right,on=['key1','key2'],how='right')
# indicator
res = pd.merge(left,right,on=['key1','key2'],how='right',indicator=True)
# give the indicator a custom name
res = pd.merge(df1,df2,on='col1',how=outer,indicator='indicator_column')
print(res)
# merge by index
left = pd.DataFrame({'A':['A0','A1','A2'],
								   'B':['B0','B1','B2']},
								   index=['K0','K1','K2'])
right = pd.DataFrame({'C':['C0','C1','C2'],
								   'D':['D0','D1','D2']},
								   index=['K0','K1','K2'])
print(left)
print(right)
#left_index and right_index
res = pd.merge(left,right,left_index=True,right_index=True,how='outer')
print(res)
res = pd.merge(left,right,left_index=True,right_index=True,how='inner')
print(res)

# handle overlapping
boys = pd.DataFrame({'k':['K0','K1','K2'],'age':[1,2,3]})
girls = pd.DataFrame({'k':['K0','K0','K3'],'age':p4,5,6]})
print(boys)
print(girls)
res = pd.merge(boys,girls,on='k',suffixes=['_boy','_girl'],how='inner')
print(res)

pandas plot 图表
数据可视化,显示在屏幕上

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

#plot data

#Series 线性数据
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
data = data.cumsum()
data.plot()   #plt.plot(x=,t=)
plt.show()
# DataFrame
data = pd.DataFrame(np.random.randn(1000,4),
							index = np.arange(1000)
							columns = list('ABCD'))
data = data.cumsum()
print(data.fead())
data.plot()
plt.show()

# plot methods:
# 'bar','hist','kde','area','scatter','hexbin','pie'
# data.scatter(x=,y=)  分布点数据
ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class 1')
data.plot.scatter(x='A',y='C',color='DarkGreen',label='Class 2',ax=ax)
plt.show()

mofan pandas 到此为止

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值