机器学习-线性回归-身高体重关系预测

基于上一篇机器学习-根据身高体重画图练习, 本篇采用回归模型,拟合身高和体重的数据,并且可以根据给定的身高预测体重。


# 引用sklearn库,其中包含线性回归模块
from sklearn import datasets, linear_model

# 把数据拆分成训练集和测试集
from sklearn.model_selection import train_test_split

# 引用 numpy库,做科学计算
import numpy as np

# 引用matplotlib库,主要用来画图
import matplotlib.pyplot as plt

# 创建数据集,并将其写入np数组中 np array和python list的区别如下:
# python 中的 list 是 python 的内置数据类型,list 中的数据类型不必相同,
# 在 list 中保存的是数据的存放的地址,即指针,并非数据。
# array() 是 numpy 包中的一个函数,array 里的元素都是同一类型。
data = np.array([[152, 51], [156, 53], [160, 54
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值