基于上一篇机器学习-根据身高体重画图练习, 本篇采用回归模型,拟合身高和体重的数据,并且可以根据给定的身高预测体重。
# 引用sklearn库,其中包含线性回归模块
from sklearn import datasets, linear_model
# 把数据拆分成训练集和测试集
from sklearn.model_selection import train_test_split
# 引用 numpy库,做科学计算
import numpy as np
# 引用matplotlib库,主要用来画图
import matplotlib.pyplot as plt
# 创建数据集,并将其写入np数组中 np array和python list的区别如下:
# python 中的 list 是 python 的内置数据类型,list 中的数据类型不必相同,
# 在 list 中保存的是数据的存放的地址,即指针,并非数据。
# array() 是 numpy 包中的一个函数,array 里的元素都是同一类型。
data = np.array([[152, 51], [156, 53], [160, 54