pycharm远程链接服务器配置

文章描述了如何使用PyCharm专业版通过SSH远程连接到GPU节点,创建conda环境,配置项目发布路径,设置运行的Python编译器以及环境变量,以实现远程代码执行。关键步骤包括下载专业版PyCharm,创建SSH连接,创建conda环境,部署项目到远程服务器,并确保所有路径和环境变量正确设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拿到gpu的节点以后开始下面的配置
1. 下载专业版pycharm,一定是专业版,community版本没有远程连接ssh的功能。
2. python编译器->添加ssh编译器->新创建服务器配置

3. 输入host名,用户名。 host名字如:vpcc-gpu032,用户名:xxxx
在这里插入图片描述
4. 下一步 输入密码, 下一步,下一步,下一步,下一步….结束
在这里插入图片描述
以上连接结束。

下面开始运行代码的配置。

1. 首先在远程端创建conda环境
conda create -n xxx python=3.xxxx
  1. 创建好以后,批量安装程序所需要的包
    3. 设置项目发布路径。 本地的程序要在远程端执行,需要把本地的程序发布到远程服务器上,然后映射到该目录下。 Tools -> Deployment -> -Configuration -> Mappings. 注意这里的路径
    Local path 为本地项目路径,如果不对改一下。 Deployent path 设置为学校服务器下面临时文件tmp的路径,如果不对改一下,最后这个pycharm_project_84是我的程序远程地址,别跟其他人设置成一样的。
    在这里插入图片描述
    设置本地程序的结构,如下图settings -> Project Structure 右边,添加内容根目录,设置为项目的根路径就可以了
    在这里插入图片描述
    设置完以后, 发布程序,将本地的程序,发布到上面设置的远程路径下 Tools -> Deployment -> Upload to, 发布完以后进入到远程目录下面,检查一下看看工程是否已经发布进来,不然运行的时候会报错,找不到可执行文件。 错误日志:[Errno 2] No such file or directory: ‘/tmp/pycharm_project_856/run.py’
    在这里插入图片描述
  2. 设置发布时的选项,设置为下图红色框里面的选项, 不然还是报找不到可执行程序的错误
    在这里插入图片描述
    在这里插入图片描述
  3. 设置运行的python编译器为远程端的python编译器,设置为conda下面自己创建的环境,例如我的名字交casrel,那么找到casrel下面bin/python3.7.exe文件即可。
    在这里插入图片描述
  4. 查看是否设置成功
    Run-> Edit configuration,查看如下python interpreter的地址是否为上一个步骤设置的地址。
    在这里插入图片描述
  5. 设置环境cuda变量
    Run-> Edit configuration。 Environment variables. LD_LIBRARY_PATH=/usr/local/cuda/lib64,可以查看一下,远程服务器上的地址是不是这个地址。确认无误后设置。

在这里插入图片描述
刷新程序,跑代码。
在这里插入图片描述

<think>好的,用户想了解如何使用PyCharm远程连接到服务器的详细教程。首先,我需要回忆PyCharm远程连接功能,通常这涉及到配置SSH解释器或者使用远程开发模式。根据提供的引用内容,有几个关键点需要注意: 引用[2]提到在Windows上通过PyCharm连接Linux服务器的Docker容器,这说明用户可能需要配置远程解释器,并且可能涉及到Docker。但用户的问题更偏向于基本的SSH连接,所以可能不需要深入Docker部分。引用[1]提到PyCharm的调试服务器使用SSH端口转发,需要检查sshd_config中的AllowTcpForwarding是否启用,默认是允许的。这点很重要,因为如果配置错误,连接可能会失败。引用[3]指出在添加远程解释器时选择Existing server,说明用户需要提前配置SSH连接。引用[4]提到使用JetBrains网关下载IDE后端,这可能是指远程开发模式,但用户可能需要的是更传统的远程解释器配置。 接下来,我需要按照步骤来组织教程。首先配置SSH连接,然后在PyCharm中设置远程解释器。过程中需要确保用户正确输入主机IP、端口、用户名和认证方式(密码或密钥)。同时,要提醒用户检查sshd_config中的AllowTcpForwarding是否为yes,否则端口转发会被阻止,导致调试失败。此外,同步本地远程项目文件的步骤也很重要,确保代码能够正确上传到服务器。最后,测试配置是否成功,并给出常见问题解决方法,比如网络问题、权限问题等。 用户可能还会关心如何部署代码和进行远程调试,这部分需要简要说明。另外,生成的相关问题需要涵盖配置验证、密钥认证、Docker容器连接以及断点调试,这些都是用户在配置过程中可能遇到的后续问题。需要确保每个步骤清晰,并参考提供的引用内容来增加可信度,比如引用[1]和[3]中的细节。同时,避免使用复杂术语,保持语言简洁易懂,符合用户的需求。</think>### PyCharm远程连接服务器配置指南 #### 一、基础环境准备 1. 确保服务器已开启SSH服务(默认端口22) 2. 在PyCharm 2021.3+版本中,通过`File > Settings > Tools > SSH Configurations`新建连接 3. 输入服务器IP地址、SSH端口(默认22)、用户名和认证方式: - 密码认证:直接填写服务器密码 - 密钥认证:配置`~/.ssh/id_rsa`私钥文件[^3] #### 二、配置远程解释器 1. 进入`File > Settings > Python Interpreter` 2. 点击齿轮图标选择`Add New Interpreter > On SSH` 3. 选择已配置的SSH服务器(Existing server) 4. 指定远程Python解释器路径(默认`/usr/bin/python3`) 5. 设置项目文件同步路径(自动映射本地服务器目录) ```python # 测试远程解释器 import socket print(socket.gethostname()) # 应显示服务器主机名 ``` #### 三、调试配置要点 1. 在服务器`sshd_config`中确认`AllowTcpForwarding yes`(默认已启用)[^1] 2. 部署配置选择`Python Remote Debug`模板 3. 设置断点时确保本地远程代码版本一致 #### 四、文件同步设置 1. 在`Tools > Deployment > Configuration`中配置自动上传 2. 启用`Automatic Upload`选项(保存时自动同步) 3. 排除不需要同步的目录(如`venv`, `__pycache__`) #### 五、远程开发模式(可选) 1. 使用`JetBrains Gateway`连接(适用于无本地IDE环境) 2. 自动下载轻量级IDE后端到服务器[^4] 3. 支持完整开发功能(包括调试、测试等)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值