1、一阶微分方程
- 齐次微分方程
掌握基本解题方法。
- 一阶线性微分方程
- 一阶齐次线性方程, 一阶非齐次线性方程
通解公式法、积分因子法。
- 伯努利方程
了解其方程形式,以及解题方法(固定)。
- 一阶齐次线性方程, 一阶非齐次线性方程
2、可降阶的高阶微分方程
- y^(n)=f(x)型
连续积分n次。
- y’’=f(x,y’)型
令p(x)=y’,化为关于p,x的微分方程。
- y’’=f(y,y’)型
令p(x)=y’,通过变换将x去掉。化为关于p,y的微分方程。
3、线性方程解的结构与性质
- 需熟练掌握。
4、二阶常系数线性微分方程的解
- 要熟练掌握通解和特解的不同形式
- 齐次方程
会求通解。
- 非齐次方程
先求对应齐次方程的通解,再求特解。
5、欧拉方程
- 掌握欧拉方程形式,以及求解方法。
6、差分方程
- 掌握差分的定义,以及一阶差分与二阶差分形式。
- 会求解一阶常系数差分方程(类似于二阶常系数线性微分方程)。