排队论,对策论,层次分析法

排队论模型
  • 排队论(Queuing Theory)也称随机服务系统理论,就是为解决服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现而发展的一门学科。

    • 性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。
    • 最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。
    • 排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行分析研究。
  • 基本概念

    • 在这里插入图片描述
    • 图中虚线所包含的部分为排队系统。

    • 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。

    • 排队系统的组成和特征

      • 输入过程:指顾客到来时间的规律性

        • 顾客的组成可能是有限的,也可能是无限的
        • 顾客到达的方式可能是一个—个的,也可能是成批的。
        • 顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。
        • 输入过程可以是平稳,即相继到达的间隔时间分布及数学期望、方差等数字特征都与时间无关,否则是非平稳。
      • 排队规则:指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和混合制三种。

        • 损失制(消失制)。当顾客到达时,所有的服务台均被占用,顾客随即离去。
        • 等待制。当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接受完服务才离去。
        • 混合制。介于损失制和等待制之间的是混合制,即既有等待又有损失。有队列长度有限排队等待时间有限两种情况,在限度以内就排队等待,超过一定限度就离去。
          • 排队方式还分为单列、多列和循环队列
      • 服务过程

        • 服务机构。主要有以下几种类型:单服务台;多服务台并联(每个服务台同时为不同顾客服务);多服务台串联(多服务台依次为同一顾客服务);混合型。

        • 服务规则。按为顾客服务的次序采用以下几种规则:

          • 先到先服务
          • 后到先服务
          • 随机服务
          • 优先服务
    • 排队模型的符号表示

      • 排队模型用六个符号表示,在符号之间用斜线隔开,即 X /Y / Z / A/ B /C

        • 第一个符号 X 表示顾客到达流或顾客到达间隔时间的分布;
        • 第二个符号Y 表示服务时间的分布;
        • 第三个符号 Z 表示服务台数目;
        • 第四个符号 A 是系统容量限制;
        • 第五个符号 B 是顾客源数目;
        • 第六个符号C 是服务规则,如先到先服务 FCFS,后到先服务 LCFS 等。
      • 表示顾客到达间隔时间和服务时间的分布的约定符号为:

        • M —指数分布( M 是 Markov 的字头,因为指数分布具有无记忆性,即 Markov性);
        • D —确定型(Deterministic);
        • E(k)k 阶爱尔朗(Erlang)分布;
        • G —一般(general)服务时间的分布;
        • GI —一般相互独立(General Independent)的时间间隔的分布。
        • M / M /1表示相继到达间隔时间为指数分布、服务时间为指数分布、单服务台、等待制系统。
        • D / M / c 表示确定的到达时间、服务时间为指数分布、 c 个平行服务台(但顾客是一队)的模型。
      • 排队系统的运行指标

        • 平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望,记作 L**s
        • *平均排队长:指系统内等待服务的顾客数的数学期望,记作 *Lq
        • 平均逗留时间:顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)的数学期望,记作W**s
        • 平均等待时间:指一个顾客在排队系统中排队等待时间的数学期望,记作W**q
        • 平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望,记为T**b
        • 由于顾客被拒绝而使企业受到损失的损失率以及以后经常遇到的服务强度
    • 输入过程与服务时间的分布

      • 泊松流与指数分布

        • 形成泊松流。这三个条件是:

          • 在不相重叠的时间区间内顾客到达数是相互独立的,我们称这性质为无后效性。
          • 对充分小的 Δt ,在时间区间[t,t + Δt)内有一个顾客到达的概率与t 无关,而约与区间长 Δt 成正比,即 P1 (t,t + Δt) = λΔt + ot) ,其中ot) ,当 Δt → 0 时,是关于 Δt 的高阶无穷小。λ > 0 是常数,它表示单位时间有一个顾客到达的概率,称为概率强度。
          • 对于充分小的 Δt ,在时间区间[t,t + Δt)内有两个或两个以上顾客到达的概率极小,以致可以忽略
        • 正如在概率论中所学过的,我们说随机变量{N(t) = N(s + t) − N(s)}服从泊松分布。它的数学期望和方差分别是E[N(t)] = λt; Var[N(t)] = λt。

        • 当输入过程是泊松流时,那么顾客相继到达的时间间隔T 必服从指数分布。

    • 常用的连续型概率分布

      • 均匀分布
        • 区间 (a,b) 内的均匀分布记作U(a,b) 。
        • 服从U(0,1) 分布的随机变量又称为随机数,它是产生其它随机变量的基础。如若 XU(0,1) 分布,则Y = a + (ba)X 服从U(a,b) 。
      • 正态分布
        • μ 为期望,σ**2 为方差的正态分布记作 N(μ,σ2 ) 。
      • 指数分布
        • 指数分布是单参数λ 的非对称分布,记作 Exp(λ)
        • 它的数学期望为 1/λ,方差为 1/λ**2
        • 指数分布是唯一具有无记忆性的连续型随机变量,即有 P(X > t + s | X > t) = P(X > s) ,在排队论、可靠性分析中有广泛应用。
      • Gamma 分布
        • Gamma 分布是双参数α,β 的非对称分布,记作G(α,β ) ,期望是αβ
        • α = 1时蜕化为指数分布。 n 个相互独立、同分布(参数 λ )的指数分布之和是 Gamma 分布(α = n, β = λ) 。
        • Gamma 分布又称爱尔朗分布。
      • Weibull 分布
        • Weibull 分布是双参数α,β 的非对称分布,记作W(α, β ) 。
        • α = 1时蜕化为指数分布。
      • Beta 分布
        • Beta 分布是区间(0,1) 内的双参数、非均匀分布,记作 B(α, β ) 。
    • 常用的离散型概率分布

      • 离散均匀分布
      • Bernoulli 分布(两点分布)
        • Bernoulli 分布是 x = 1,0 处取值的概率分别是 p 和1− p 的两点分布,记作Bern( p) 。
      • 泊松(Poisson)分布
        • 泊松分布与指数分布有密切的关系。
        • 当顾客平均到达率为常数 λ 的到达间隔服从指数分布时,单位时间内到达的顾客数 K 服从泊松分布
        • 记作 Poisson(λ) 。
      • 二项分布
        • 二项分布是n 个独立的 Bernoulli 分布之和。
        • 记作 B(n, p) 。
        • n,k 很大时, B(n, p) 近似于正态分布 N(np,np(1− p)) ;当n 很大、 p 很小,且np 约为常数λ 时, B(n, p) 近似于 Poisson(λ)。
对策论
  • 对策论亦称竞赛论或博弈论。研究具有斗争或竞争性质现象的数学理论和方法。

  • 它既是现代数学的一个新分支,也是运筹学中的一个重要学科。

  • 对策的基本要素

    • 局中人
      • 在一个对策行为(或一局对策)中,有权决定自己行动方案的对策参加者,称为局中人。
      • 一般要求一个对策中至少要有两个局中人。
    • 策略集
      • 一局对策中,可供局中人选择的一个实际可行的完整的行动方案称为一个策略。
      • 一般,每一局中人的策略集中至少应包括两个策略。
    • 赢得函数(支付函数)
      • 在一局对策中,各局中人所选定的策略形成的策略组称为一个局势
      • 当局势出现后,对策的结果也就确定了。也就是说,对任一局势, sS ,局中人i 可以得到一个赢得 H**i(s) 。
      • 显然, H**i(s) 是局势 s 的函数,称之为第i 个局中人的赢得函数。
  • 零和对策(矩阵对策)

    • 在这类对策中,只有两名局中人,每个局中人都只有有限个策略可供选择。
    • 在任一纯局势下,两个局中人的赢得之和总是等于零,即双方的利益是激烈对抗的。
    • 零和对策G 具有稳定解的充要条件为 μ +ν = 0。
    • 若存在m 维概率向量 xn 维概率向量 y ,使得对一切m 维概率向量 xn 维概率向量 y在这里插入图片描述
      则称(x, y) 为混合策略对策问题的鞍点。
    • 任意混合策略对策问题必存在鞍点,即必存在概率向量 xy ,使得:在这里插入图片描述
层次分析法
  • 层次分析法(Analytic Hierarchy Process,简称 AHP),人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

  • 运用层次分析法建模,大体上可按下面四个步骤进行:

    1. 建立递阶层次结构模型;

      • 首先要把问题条理化、层次化,构造出一个有层次的结构模型。

      • 复杂问题被分解为元素的组成部分。

      • 这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。

        • 最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
        • 中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层
        • 最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层
          • 在这里插入图片描述
     >   - 
    
    1. 构造出各层次中的所有判断矩阵;

      • 层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。
      • 可以采取对因子进行两两比较建立成对比较矩阵的办法。
      • 每次取两个因子 x ix j ,以 a**ij 表示 x ix jZ 的影响大小之比,全部比较结果用矩阵 A = (a**ij)(n×n) 表示,称 AZX 之间的成对比较判断矩阵(简称判断矩阵)
      • 从心理学观点来看,分级太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。实验结果也表明,采用 1~9 标度最为合适。
      • 最后,应该指出,一般地作n(n −1)/2 次两两判断是必要的。这种作法的弊病在于,任何一个判断的失误均可导致不合理的排序,而个别判断的失误对于难以定量的系统往往是难以避免的。
    2. 层次单排序及一致性检验;

      • 判断矩阵 A 对应于最大特征值λmax 的特征向量W ,经归一化后即为同一层次相应因素对于上一层次某因素相对重要性的排序权值,这一过程称为层次单排序。
    3. 层次总排序及一致性检验。

      • 上面我们得到的是一组元素对其上一层中某元素的权重向量。我们最终要得到各元素,特别是最低层中各方案对于目标的排序权重,从而进行方案选择。总排序权重要自上而下地将单准则下的权重进行合成。

向量W ,经归一化后即为同一层次相应因素对于上一层次某因素相对重要性的排序权值,这一过程称为层次单排序。

  1. 层次总排序及一致性检验。

    • 上面我们得到的是一组元素对其上一层中某元素的权重向量。我们最终要得到各元素,特别是最低层中各方案对于目标的排序权重,从而进行方案选择。总排序权重要自上而下地将单准则下的权重进行合成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羞儿

写作是兴趣,打赏看心情

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值