《算法竞赛入门经典(第2版)》3n+1猜想

《算法竞赛入门经典(第2版)》P22 例题2-2

猜想:对于任意大于1的自然数n,若n为奇数,则将n变为3n+1,否则变为n的一半。经过若干次这样的变换,一定会使n变为1。

题目:输入n,输出变换的次数,n ≤ \leq 109

书中给出的第一种方案(有bug):

#include<stdio.h>
int main()
{
    int n,count=0;
    sacnf("%d",&n);
    while(n>1)
    {
        if(n%2==1)n=3*n+1;
        else n/=2;
        count++;
    }
    printf("%d",count);
    return 0;
}

输入987654321,输出为1,证明答案错误。

通过调试,发现经过第一次while循环时,n的值为-1332004332.


笔者在此尝试解释一下这个n的成因:

对于int型的变量,为32位,第一位为符号位,0表示整数,1表示负数

所以int型变量的最大值为231-1。

如果超出了int型的最大值,则会发生正向溢出。

例:如果int型变量赋值为231,发生溢出,其二进制表示为1000 0000 0000 0000 0000 0000 0000 0000,在int型变量中表示为-2^31。

如果int型变量赋值为231+1,其二进制表示为1000 0000 0000 0000 0000 0000 0000 0001,在int型变量中表示为-231+1。以此类推


补充:二进制中负数的表示:

用其绝对值的二进制取反加1

例:521的二进制0000 0000 0000 0000 0000 0010 0000 1001

​ 取反为1111 1111 1111 1111 1111 1101 1111 0110

​ +1后为1111 1111 1111 1111 1111 1101 1111 0111即为-521的二进制表示

所以输入987654321,计算987654321*3=2962962963超过了231,

2962962963-231=815479315 根据上文所述的规律,

该结果应该为-231+815479315=-1332004333

所以n=3*n+1=-1332004332即为我们输出的结果

回到本题,本题中n的上限109只比int的上界稍微小一点,要使用C99中新增的long long即可解决问题,其范围为-263~263-1,唯一的区别是要把输入时的%d改为%lld。但这也是不保险的——在MinGW的gcc中,要把%lld改成%I64d,但VC2008中又得改回%lld,所以设计long long的输入输出,一般使用C++的输入输出流或自定义的输入输出方法。

下面给出的解决方案巧妙的避开了long long格式的输入输出。

#include<stdio.h>
int main()
{
    int n2,count=0;
    scanf("%d",&n2);//此处使用%d因为10^9未超过int的上界
    long long n=n2;
    while(n>1)
    {
        if(n%2==1)n=3*n+1;
        else n/=2;
        count++;
    }
    printf("%d",count);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值