算法训练第三十七天|738.单调递增的数字 、968.监控二叉树、 贪心算法总结

738.单调递增的数字

题目链接:738.单调递增的数字
参考:https://programmercarl.com/0738.%E5%8D%95%E8%B0%83%E9%80%92%E5%A2%9E%E7%9A%84%E6%95%B0%E5%AD%97.html

题目描述

给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:

  • 输入: N = 10
  • 输出: 9

示例 2:

  • 输入: N = 1234
  • 输出: 1234

示例 3:

  • 输入: N = 332
  • 输出: 299

说明: N 是在 [0, 10^9] 范围内的一个整数。

思路

暴力解法

题意很简单,那么首先想的就是暴力解法了,来我替大家暴力一波,结果自然是超时!

代码如下:

class Solution {
private:
    // 判断一个数字的各位上是否是递增
    bool checkNum(int num) {
        int max = 10;
        while (num) {
            int t = num % 10;
            if (max >= t) max = t;
            else return false;
            num = num / 10;
        }
        return true;
    }
public:
    int monotoneIncreasingDigits(int N) {
        for (int i = N; i > 0; i--) { // 从大到小遍历
            if (checkNum(i)) return i;
        }
        return 0;
    }
};

时间复杂度:O(n × m) m为n的数字长度
空间复杂度:O(1)

贪心算法

题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

这一点如果想清楚了,这道题就好办了。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

C++代码如下:

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};

时间复杂度:O(n),n 为数字长度
空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便

总结

本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。

想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。

最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。

968.监控二叉树(hard)

题目链接:968.监控二叉树
参考:https://programmercarl.com/0968.%E7%9B%91%E6%8E%A7%E4%BA%8C%E5%8F%89%E6%A0%91.html

题目描述

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

示例 1:
在这里插入图片描述

  • 输入:[0,0,null,0,0]
  • 输出:1
  • 解释:如图所示,一台摄像头足以监控所有节点。

示例 2:
在这里插入图片描述

  • 输入:[0,0,null,0,null,0,null,null,0]
  • 输出:2
  • 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

提示:

  • 给定树的节点数的范围是 [1, 1000]。
  • 每个节点的值都是 0。

思路

这道题目首先要想,如何放置,才能让摄像头最小的呢?

从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!

这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

局部最优推出全局最优,找不出反例,那么就按照贪心来!

此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  • 二叉树的遍历
  • 如何隔两个节点放一个摄像头
确定遍历顺序

在二叉树中如何从低向上推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

后序遍历代码如下:

int traversal(TreeNode* cur) {

    // 空节点,该节点有覆盖
    if (终止条件) return ;

    int left = traversal(cur->left);    // 左
    int right = traversal(cur->right);  // 右

    // 逻辑处理                            // 中
    return ;
}

注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态

如何隔两个节点放一个摄像头

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

大家应该找不出第四个节点的状态了。

一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。

因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?

回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

接下来就是递推关系。

那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。

代码如下:

// 空节点,该节点有覆盖
if (cur == NULL) return 2;

递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。

主要有如下四类情况:

情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

如图:
在这里插入图片描述
代码如下:

// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;

情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

代码如下:

if (left == 0 || right == 0) {
    result++;
    return 1;
}

情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头

代码如下:

if (left == 1 || right == 1) return 2;

从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
在这里插入图片描述
这种情况也是大多数同学容易迷惑的情况。

情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
在这里插入图片描述
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:

int minCameraCover(TreeNode* root) {
    result = 0;
    if (traversal(root) == 0) { // root 无覆盖
        result++;
    }
    return result;
}

以上四种情况我们分析完了,代码也差不多了,整体代码如下:

(以下我的代码注释很详细,为了把情况说清楚,特别把每种情况列出来。)

C++代码如下:

// 版本一
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {

        // 空节点,该节点有覆盖
        if (cur == NULL) return 2;

        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右

        // 情况1
        // 左右节点都有覆盖
        if (left == 2 && right == 2) return 0;

        // 情况2
        // left == 0 && right == 0 左右节点无覆盖
        // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
        // left == 0 && right == 2 左节点无覆盖,右节点覆盖
        // left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }

        // 情况3
        // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        // left == 1 && right == 1 左右节点都有摄像头
        // 其他情况前段代码均已覆盖
        if (left == 1 || right == 1) return 2;

        // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
        // 这个 return -1 逻辑不会走到这里。
        return -1;
    }

public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        // 情况4
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

在以上代码的基础上,再进行精简,代码如下:

// 版本二
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {
        if (cur == NULL) return 2;
        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右
        if (left == 2 && right == 2) return 0;
        else if (left == 0 || right == 0) {
            result++;
            return 1;
        } else return 2;
    }
public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

版本二其实就是在版本一的基础上,使用else把一些情况直接覆盖掉了。

在网上关于这道题解可以搜到很多这种神级别的代码,但都没讲不清楚,如果直接看代码的话,指定越看越晕,所以建议大家对着版本一的代码一步一步来,版本二中看不中用!。

总结

本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。

在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。

这道题目是名副其实的hard,大家感受感受。

贪心算法总结

参考:https://programmercarl.com/%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%E6%80%BB%E7%BB%93%E7%AF%87.html
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值