多标签图像分类
落花满蹊径
这个作者很懒,什么都没留下…
展开
-
多标签分类(十三):Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
多标签图像识别的语义图表示学习摘要 识别图像的多个标签是一项实用且具有挑战性的任务,通过搜索语义敏感区域和建立标签依赖关系已经取得了重要进展,然而,由于缺乏部分级监督和语义指导,现有的方法无法准确定位语义区域.此外,它们不能充分探索语义区域之间的相互作用,也没有明确地对标签共现进行建模.为了解决这些问题,我们提出了一个特定于语义的图表示学习(SSGRL)框架,该框架由两个关键模块组成:1)语义解耦模块,包含类别语义来指导特定语义表示的学习.2)语义交互模块,将这些表示与基于统计标签共现的图相关联,并通原创 2020-12-23 22:02:23 · 3093 阅读 · 6 评论 -
多标签分类(七):Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification
基于语义图嵌入的跨模注意多标签分类摘要 多标签图像和视频分类是计算机视觉中最基本但又极具挑战性的任务.主要的挑战在于捕获标签之间的空间或时间依赖,并发现每个类的区别特征的位置.为了克服这些挑战,我们提出利用交叉模态注意和语义图嵌入来进行多标签分类.在构造标签图的基础上,提出了一种基于邻接的相似图嵌入方法来学习语义标签嵌入,这种方法能明确利用标签之间的关系。在标签嵌入的指导下,生成了新的交叉模态注意图。在两个多标签图像分类数据集(MS-COCO和nos - wide)上的实验表明,我们的方法优于现有的.原创 2020-09-28 20:19:35 · 5619 阅读 · 5 评论 -
多标签分类(六):Fine-Grained Lesion Annotation in CT Images with Knowledge Mined From Radiology Reports
细粒病灶注释在CT图像与知识挖掘从放射学报告 文章来自2019年CVPR 摘要 在放射科医师的日常工作中,一个主要的任务是阅读医学图像,例如CT扫描,发现重要的病变,并在放射学报告中写下句子来描述它们,在本文中,我们研究了在计算机辅助诊断(CAD)中,病灶描述或标注问题的一个重要步骤。给定一幅病变图像,我们的目标是预测多个相关标签,如损伤的身体部位、类型和属性。为了解决这个问题,我们基于RadLex定义了一组145个标签来描述DeepLesion数据集中的大量病变。我们直接从放射学报告中病变的对应原创 2020-09-23 10:47:29 · 1100 阅读 · 0 评论 -
多标签分类(一) | CNN-RNN: A Unified Framework for Multi-label Image Classification
CNN-RNN:一种统一的多标签图像分类框架摘要 虽然深度卷积神经网络(CNNs)在单标签图像分类方面取得了巨大成功,但需要注意的是,现实世界的图像通常包含多个标签,这些标签可以对应于一幅图像中不同的物体、场景、动作和属性,传统的多标签图像分类方法是对每个类别学习独立的分类器,并对分类结果进行排序或阈值设定。这些技术虽然执行的很顺利,但是不能明确的利用图像中的标签依赖关系。在本文中,我们利用递归神经网络(RNNs)来解决标签依赖关系的问题。结合CNNs,本文提出的CNN-RNN框架学习一个联合图像-标原创 2020-08-06 20:31:24 · 8286 阅读 · 8 评论