Leet-Code(927)--三等分--困难

三等分

题目介绍

给定一个由 0 和 1 组成的数组 arr ,将数组分成 3 个非空的部分 ,使得所有这些部分表示相同的二进制值。

如果可以做到,请返回任何 [i, j],其中 i+1 < j,这样一来:

  • arr[0], arr[1], …, arr[i] 为第一部分;
  • arr[i + 1], arr[i + 2], …, arr[j - 1] 为第二部分;
  • arr[j], arr[j + 1], …, arr[arr.length - 1] 为第三部分。
  • 这三个部分所表示的二进制值相等。
    如果无法做到,就返回 [-1, -1]。

注意,在考虑每个部分所表示的二进制时,应当将其看作一个整体。例如,[1,1,0] 表示十进制中的 6,而不会是 3。此外,前导零也是被允许的,所以 [0,1,1] 和 [1,1] 表示相同的值


来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/three-equal-parts
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


示例1:
输入:arr = [1,0,1,0,1]
输出:[0,3]
示例2:
输入:arr = [1,1,0,1,1]
输出:[-1,-1]
示例3:
输入:arr = [1,1,0,0,1]
输出:[0,2]
提示:
  • 3 <= arr.length <= 3 * 10^4
  • arr[i] 是 0 或 1

解题思路

太久没有刷题,脑袋秀逗了。。。没有做出来,依旧很菜。

  • 二进制相同,则1的个数相同,所以首先需要统计1的个数,进行三等分,如果不能三等分,直接返回[-1,-1]
  • 三等分之后,就可以确定每一部分开的开头的位置,即每一部分第一个1的位置,分别为first,second,third
  • 由于每一部分末尾的0可以作为下一部分的开头,所以每一部分的末尾不能确定,但是第三部分的末尾的0不会作为开头,所以第三部分的末尾可以确定,由此计算出每一部分从第一位1开始到末尾的长度length。
  • 从每一部分开头开始分别遍历,如果每一位都相等则返回[first+lenth-1,second+length],不等返回[second-1,third],因为前导零的存在所以second-1和third不一定为每一部分开始的位置。
  • 时间复杂度:O(n)
    ^_^

代码

class Solution {
public:
    vector<int> threeEqualParts(vector<int>& arr) {
        int count=0;
        for(auto num:arr){
            if(num) count++;
        }
        if(count%3) return{-1,-1};
        if(!count) return {0,2};
        int part=count/3;
        int first,second,third,cur=0;
        for(int i=0;i<arr.size();i++){
            if(arr[i]){
                cur++;
                if(cur==1)
                    first=i;
                if(cur==part+1)
                    second=i;
                if (cur==2*part+1)
                    third=i; 
            }
            }
        int length=arr.size()-third;
        if(first+length<=second&&second+length<=third){
           int i=0;
           while(i<length){
               if (arr[first+i]!=arr[second+i]||arr[second+i]!=arr[third+i])
                    return {-1,-1};
                i++;
           }
           return {first+length-1,second+length};
        }
        return{-1,-1};
    }
};

加油~ QAQ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轩辕青山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值