三等分
题目介绍
给定一个由 0 和 1 组成的数组 arr ,将数组分成 3 个非空的部分 ,使得所有这些部分表示相同的二进制值。
如果可以做到,请返回任何 [i, j],其中 i+1 < j,这样一来:
- arr[0], arr[1], …, arr[i] 为第一部分;
- arr[i + 1], arr[i + 2], …, arr[j - 1] 为第二部分;
- arr[j], arr[j + 1], …, arr[arr.length - 1] 为第三部分。
- 这三个部分所表示的二进制值相等。
如果无法做到,就返回 [-1, -1]。
注意,在考虑每个部分所表示的二进制时,应当将其看作一个整体。例如,[1,1,0] 表示十进制中的 6,而不会是 3。此外,前导零也是被允许的,所以 [0,1,1] 和 [1,1] 表示相同的值
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/three-equal-parts
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
示例1:
输入:arr = [1,0,1,0,1]
输出:[0,3]
示例2:
输入:arr = [1,1,0,1,1]
输出:[-1,-1]
示例3:
输入:arr = [1,1,0,0,1]
输出:[0,2]
提示:
- 3 <= arr.length <= 3 * 10^4
- arr[i] 是 0 或 1
解题思路
太久没有刷题,脑袋秀逗了。。。没有做出来,依旧很菜。
- 二进制相同,则1的个数相同,所以首先需要统计1的个数,进行三等分,如果不能三等分,直接返回[-1,-1]
- 三等分之后,就可以确定每一部分开的开头的位置,即每一部分第一个1的位置,分别为first,second,third
- 由于每一部分末尾的0可以作为下一部分的开头,所以每一部分的末尾不能确定,但是第三部分的末尾的0不会作为开头,所以第三部分的末尾可以确定,由此计算出每一部分从第一位1开始到末尾的长度length。
- 从每一部分开头开始分别遍历,如果每一位都相等则返回[first+lenth-1,second+length],不等返回[second-1,third],因为前导零的存在所以second-1和third不一定为每一部分开始的位置。
- 时间复杂度:O(n)
^_^
代码
class Solution {
public:
vector<int> threeEqualParts(vector<int>& arr) {
int count=0;
for(auto num:arr){
if(num) count++;
}
if(count%3) return{-1,-1};
if(!count) return {0,2};
int part=count/3;
int first,second,third,cur=0;
for(int i=0;i<arr.size();i++){
if(arr[i]){
cur++;
if(cur==1)
first=i;
if(cur==part+1)
second=i;
if (cur==2*part+1)
third=i;
}
}
int length=arr.size()-third;
if(first+length<=second&&second+length<=third){
int i=0;
while(i<length){
if (arr[first+i]!=arr[second+i]||arr[second+i]!=arr[third+i])
return {-1,-1};
i++;
}
return {first+length-1,second+length};
}
return{-1,-1};
}
};
加油~ QAQ