01 架构模式与概述
基本原理
大模型通常具有强大的通用语言理解和生成能力。例如,像 GPT 系列这样的大语言模型可以处理各种各样的自然语言处理任务,如文本生成、翻译、问答等。然而,大模型可能在某些特定领域或任务细节上不够精准或高效。这时候,多个小模型就可以发挥作用。小模型可以是专门针对某一特定任务(如医学图像识别、金融风险评估等)进行训练的模型,它们可以利用领域特定的知识和数据进行精细调整。
前排提示,文末有AI大模型CSDN独家籽料包哦!
这种架构模式结合了大模型的通用性和小模型的专业性。大模型可以为小模型提供初始的语义理解、上下文信息等基础支持,而小模型则可以针对具体的任务目标进行深入处理,从而提高整个系统在复杂应用场景下的性能。
优势
ENTER TITLE
降低成本
训练大模型需要大量的计算资源和数据。在一些应用场景下,如果全部使用大模型来处理所有任务,不仅成本高,而且可能会造成资源浪费。通过使用小模型处理特定任务,可以在一定程度上减少对大模型的过度依赖。例如,在一个包含多种文档格式(如文本、表格、图像)的文档处理应用中,对于文本部分可以利用大模型进行语义理解和内容提取,而对于表格和图像部分,可以使用专门的小模型进行处理。这样可以避免为了处理表格和图像而对大模型进行额外的大规模训练,从而降低开发和训练成本。
ENTER TITLE
提升效率
对于一些实时性要求较高的任务,小模型可以快速处理特定部分的任务。比如在智能客服系统中,大模型可以对客户咨询的问题进行初步分类,当确定是某一特定产品(如某一款电子产品)的技术问题时,激活针对该产品的小模型来提供详细的解决方案。小模型由于其针对性,不需要像大模型那样在庞大的知识空间中搜索相关内容,因此可以更快地给出答案,从而提升系统的整体响应效率。
ENTER TITLE
提高准确性
以医疗领域为例,在医学文献检索和疾病诊断辅助系统中,大模型可以帮助理解患者的病历文本(包括症状描述、病史等)的大致内容。但对于一些具体的疾病诊断任务,如根据 X 光片诊断骨折类型或通过心电图判断心律失常类型等,专门的医学影像小模型或心电信号小模型可以提供更准确的诊断结果。这些小模型是基于大量的医学影像或心电数据进行训练的,能够捕捉到特定疾病的细微特征,与大模型结合后可以提高整个诊断系统的准确性。
挑战
ENTER TITLE
协调与管理复杂
在应用运行过程中,如何协调大模型和小模型的工作流程是一个挑战。需要确定在什么情况下激活小模型,如何将大模型的输出作为小模型的输入,以及如何整合小模型的输出返回给用户或其他系统组件。而且,随着应用场景的变化和新任务的增加,可能需要不断调整大模型和小模型的组合方式和参数,这对系统的管理和维护提出了较高的要求。
ENTER TITLE
模型集成难度
大模型和小模型的接口设计和数据交互是一个复杂的问题。大模型和小模型可能使用不同的编程语言、框架和数据格式。例如,大模型可能是基于 PyTorch 开发的深度学习语言模型,而小模型可能是用 TensorFlow 构建的计算机视觉模型。将它们集成在一起需要设计合适的接口,确保数据能够在不同模型之间有效传递和转换。
02 成功案例
以下是大模型 + 多个小模型架构模式在实际应用中的一些
医疗领域
ENTER TITLE
华大基因的基因检测多模态大模型
华大基因发布的面向临床的基因检测多模态大模型 Genet,采用了大模型结合小模型的架构。其底层架构采用 Transformer 架构自研打造大模型产品,并融合了一些开源模型的能力。在基因检测过程中,应用多模态大模型结合文字及图片的综合识别技术,解放了更多的人力,增效效果明显。同时,针对基因检测的垂直领域特性,华大基因还采用了一些十几 b 参数的小模型,在满足生产需求的同时降低了投产之后的模型推理成本。
ENTER TITLE
鹰瞳 Airdoc 的眼科 AI 产品
鹰瞳 Airdoc 是全球眼科人工智能领域的先行者,其开发的眼科 AI 产品采用了大模型架构,并结合多个小模型来实现不同的功能。例如,通过大模型模拟血管神经变化,预测疾病演进,相关技术及产品已获国家专利,实现了快速的疾病病灶衍化预测与展示。在产品部署时,采用云上 NVIDIA T4 GPU 作为推理平台,并结合 NVIDIA TensorRT 推理框架做推理计算,通过简单的网络模式转换,提升了推理速度,降低了成本,同时提高了产品的可用性和普及性。
交通领域
ENTER TITLE
百度的交通大模型应用
百度发布的 “基于交通大模型的全域信控缓堵解决方案”,在交通领域应用了大模型结合小模型的架构。其中,大模型用于对交通数据的整体分析和理解,例如对交通流量、路况等信息的综合处理。而多个小模型则分别针对不同的交通场景和问题进行具体的分析和预测,如拥堵路口的识别、预计拥堵时间的计算、拥堵原因的分析等。通过这种架构,为交管用户提供了更准确、更高效的业务处理支持,助力交通管理和决策。
ENTER TITLE
河北高速集团的智慧公路 AI 数字人 “简璐璐”
河北高速集团联合百度发布的行业首个智慧公路 AI 数字人 “简璐璐”,依托大模型的知识增强能力与内容生成能力,结合语音语义理解能力形成全新交互模式,能智能生产需要的内容,并自动撰写高速公路事件处理报告,为高速业务提供了智能助手服务。在这个案例中,大模型为数字人提供了强大的语言理解和知识基础,而多个小模型则可能用于实现不同的交互功能和业务处理逻辑,共同构建了一个智能化的交通服务系统。
自然语言处理领域
ENTER TITLE
Alpaca 模型
Alpaca 是从 52k 指令跟随演示中微调的 LLaMA 7B 模型,它通过知识蒸馏等技术从大型语言模型中学习知识,从而在质量上与 OpenAI 的 text-davinci-003 相似,但模型规模更小且易于复制和部署,可用于多种自然语言处理任务,如文本生成、问答等,体现了大模型通过知识蒸馏将知识传递给小模型,从而实现小模型在特定任务上高效应用的优势。
ENTER TITLE
图像识别领域
CascadeBERT 在图像识别中的应用:CascadeBERT 以级联方式选择适当大小和完整的模型,为图像识别提供全面的表示。其中,大模型可以负责对图像的整体特征进行提取和初步理解,而小模型则可以针对不同的图像类别或特定的图像特征进行更细致的分类和识别,从而提高图像识别的准确率和效率。
如何学习AI大模型 ?
“最先掌握AI的人,将会晚掌握AI的人有竞争优势,晚掌握AI的人比完全不会AI的人竞争优势更大”。 在这个技术日新月异的时代,不会新技能或者说落后就要挨打。
老蓝我作为一名在一线互联网企业(保密不方便透露)工作十余年,指导过不少同行后辈。帮助很多人得到了学习和成长。
我是非常希望可以把知识和技术分享给大家,但苦于传播途径有限,很多互联网行业的朋友无法获得正确的籽料得到学习的提升,所以也是整理了一份AI大模型籽料包括:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、落地项目实战等 免费分享出来。
- AI大模型学习路线图
- 100套AI大模型商业化落地方案
- 100集大模型视频教程
- 200本大模型PDF书籍
- LLM面试题合集
- AI产品经理资源合集

大模型学习路线
想要学习一门新技术,你最先应该开始看的就是学习路线图,而下方这张超详细的学习路线图,按照这个路线进行学习,学完成为一名大模型算法工程师,拿个20k、15薪那是轻轻松松!
视频教程
首先是建议零基础的小伙伴通过视频教程来学习,其中这里给大家分享一份与上面成长路线&学习计划相对应的视频教程。文末有整合包的领取方式
技术书籍籽料
当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,这里也分享一份我学习期间整理的大模型入门书籍籽料。文末有整合包的领取方式
大模型实际应用报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。文末有整合包的领取方式
大模型落地应用案例PPT
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。文末有整合包的领取方式
大模型面试题&答案
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。文末有整合包的领取方式
领取方式
这份完整版的 AI大模型学习籽料我已经上传CSDN,需要的同学可以微⭐扫描下方CSDN官方认证二维码免费领取!