1. hive简介
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
Hive不适用于实时性要求很高的事务,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。例如,hive 在几百MB 的数据集上执行查询一般有分钟级的时间延迟。
2. hive与传统数据库(Mysql)的区别
hive | mysql | |
---|---|---|
查询语言 | HQL | SQL |
存储位置 | HDFS | 块设备/本地文件系统 |
数据格式 | 用户定义 | 系统决定 |
数据更新 | 可通过插件实现 | 支持 |
索引 | 无 | 有 |
执行 | MapReduce | Executor |
执行延迟 | 高 | 低 |
可扩展性 | 高 | 低 |
数据规模 | 大 | 小 |
•查询语言:由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
•数据存储位置:Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
•数据格式:Hive中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、"\t"、"\x001")、行分隔符("\n")以及读取文件数据的方法(Hive中默认有三个文件格式TextFile、SequenceFile以及RCFile)。由于在加载数据的过程中,不需要从用户数据格式到Hive定义的数据格式的转换,因此,Hive在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的HDFS目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
•数据更新:由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO…VALUES添加数据,使用UPDATE…SET修改数据。
•索引:之前已经说过,Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入,Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势。数据库中,通常会针对一个或几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了Hive不适合在线数据查询。
•执行:Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现的(类似select * from tbl的查询不需要MapReduce)。而数据库通常有自己的执行引擎。
•执行延迟:之前提到,Hive在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架。由于MapReduce本身具有较高的延迟,因此在利用MapReduce执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
•可扩展性:由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的。而数据库由于ACID语义的严格限制,扩展性非常有限。目前最先进的并行数据库Oracle在理论上的扩展能力也只有100台左右。
•数据规模:由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
2. hive所在的大数据生态
hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成
- HDFS(分布式文件系统):分布式存储管理不同机器上的数据。
- MapReduce / Tez / Spark:HDFS之上解决分配工作、任务重启,机器之间通信交换数据等任务。其中MapReduce是第一代计算引擎,Tez和Spark是第二代。
- Pig/Hive:是MapReduce / Tez / Spark基础之上更高层更抽象的描述算法和数据处理流程的语言。Pig是接近脚本方式去描述MapReduce,Hive则用的是SQL。它们把脚本和SQL语言翻译成MapReduce程序,再用计算引擎去计算,将开发者从繁琐的MapReduce程序中解脱出来,用更简单更直观的语言去写程序。由于Hive使用SQL语言,使用门槛较低,逐渐成为了大数据仓库的核心组件。
- Impala/Presto/Drill:由于Hive在MapReduce上运行速度很慢。于是诞生了Impala,Presto,Drill(以及很多其它的交互SQL引擎),其解决的核心是MapReduce引擎太慢的问题,牺牲了MapReduce通用性稳定性等特性,让用户可以更快速地处理SQL任务,但效果并不是十分理想。
- Hive on Tez / Spark和SparkSQL的出现直接抛弃了MapReduce,直接采用新一代通用计算引擎Tez或者Spark来跑SQL。
底层HDFS,上面跑MapReduce/Tez/Spark,在上面跑Hive,Pig。或者HDFS上直接跑Impala,Drill,Presto。这解决了中低速数据处理的要求。
文章参考:
https://www.cnblogs.com/Richardzhu/p/3364909.html
https://www.zhihu.com/question/27974418/answer/38965760