机器学习--一元线性回归

本文详细介绍了机器学习中的一元线性回归,从线性方程的概念到一元线性方程的梯度下降实现。通过代价函数和最小二乘法解释了如何找到最佳拟合直线,并提供了梯度下降法的原理和一元线性回归的Python实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性方程

   线性方程可以分为:一元线性方程,多元线性方程,广义线性方程。
   一元线性方程是指拥有一个自变量一个因变量的方程,如y=ax+b
   多元线性方程是指拥有多个自变量一个因变量的方程,如y=ax+bz+c
   广义线性方程是指非线性方程问题可以使用线性求解。

一元线性方程

   我们在得到一些数据的之后,可能需要模拟一个足够接近的函数,去估测一些目前来说不存在的数据得到的结果。如以下数据:
在这里插入图片描述
我们可以使用相关系数来判断其可不可以使用线性回归来进行求解。
在这里插入图片描述
rxy的值是一个在[-1,1]直接的值,其绝对值越接近1,则表示越能够使用线性回归来进行函数的预测。(一般情况0.5往上就能够使用线性回归预测)

假设函数
   假设函数即使我们希望其能够表示测试数据集的函数,即我们期望能够得到的函数。
   如:假设我们能够使用线性回归预测,此时我们设我们的假设函数(回归函数)为y=ax+b(x为自变量,a、b为参数)
   为了使我们得到的函数与实际的数据误差最小,即每个点到直线的距离最短&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值