线性方程
线性方程可以分为:一元线性方程,多元线性方程,广义线性方程。
一元线性方程是指拥有一个自变量一个因变量的方程,如y=ax+b
多元线性方程是指拥有多个自变量一个因变量的方程,如y=ax+bz+c
广义线性方程是指非线性方程问题可以使用线性求解。
一元线性方程
我们在得到一些数据的之后,可能需要模拟一个足够接近的函数,去估测一些目前来说不存在的数据得到的结果。如以下数据:
我们可以使用相关系数来判断其可不可以使用线性回归来进行求解。
rxy的值是一个在[-1,1]直接的值,其绝对值越接近1,则表示越能够使用线性回归来进行函数的预测。(一般情况0.5往上就能够使用线性回归预测)
假设函数
假设函数即使我们希望其能够表示测试数据集的函数,即我们期望能够得到的函数。
如:假设我们能够使用线性回归预测,此时我们设我们的假设函数(回归函数)为y=ax+b(x为自变量,a、b为参数)
为了使我们得到的函数与实际的数据误差最小,即每个点到直线的距离最短&#x