最优化
文章平均质量分 92
Jonathan_Paul 10
这个作者很懒,什么都没留下…
展开
-
非线性规划与KKT(二)
非线性规划与KKT(二)在前文非线性规划与KKT(一)中, 我们已经给出了几个定义,并且证明了一个重要的定理:一个凸集的局部最优解一定为全局最优解它的证明,使用了反证法。然后,我们还介绍了Epigraph的定义。以上的这些,都是为了一个终极的定理:KKT条件。KKT条件是可以被推广到很多很多场景下的。但是,在这里,我们只阐述最简单的条件,即面对NLP问题的KKT条件。KKT条件假设,有如下的NLP:minc⊤x s.t. gi(x)≤0(i=1,…,k)\begin原创 2021-04-11 16:34:13 · 1239 阅读 · 0 评论 -
非线性规划与KTT(一)
非线性规划与KTT(一)所有的、各式各样的LP,都可以转化为Non-Linear Program(NLP)。非线性规划所有的、各式各样的LP,都可以转化为Non-Linear Program(NLP)。例如,对于0-1背包问题,是可以与下面的式子,相互转化。xj∈{0,1}⟺xj(1−xj)=0x_j\in\{0,1\} \quad \Longleftrightarrow \quad x_{j}\left(1-x_{j}\right)=0xj∈{0,1}⟺xj(1−xj)=0而IP原创 2021-04-10 17:38:34 · 1028 阅读 · 0 评论 -
最优化:对偶(一)
数学有对称美。当给定了一个LP,我们总是希望找到另外一个比较对称的LP,使得它和原来的LP之间有比较好的性质。这时候,对偶性(duality)的讨论便出现了。对偶LP(Dual Linear Program)所谓对偶的LP,一定是原LP有一定的关系。比如,我们给出下面的一个LP,记其为PPP:max(4924)⏟cx s.t. (1−430−17−51)⏟Ax=(73)⏟bx1,x2,x3,x4≥0\begin{array}{ll}\max & \underbr.原创 2021-03-07 10:41:08 · 1726 阅读 · 0 评论 -
最优化:凸性与极值
事实上,对于一个LP问题而言,之所以可以用单纯形法解,是因为它是凸的,并且保证有极值。原创 2021-02-28 18:38:21 · 1720 阅读 · 0 评论 -
最优化:单纯形法(二)
在本文中,我们着重具体地来介绍一下二段法(The 2-Phase Method)和单纯形法(the Simplex Algorithm)两种方法。原创 2021-02-18 20:49:14 · 1055 阅读 · 0 评论 -
最优化:单纯形法(一)
本文介绍了解线性规划问题,求解最优解(Optimal Solution)的方法。原创 2021-02-18 20:42:16 · 3391 阅读 · 2 评论