非线性规划与KKT(二)

非线性规划与KKT(二)

在前文非线性规划与KKT(一)中, 我们已经给出了几个定义,并且证明了一个重要的定理:

一个凸集的局部最优解一定为全局最优解

它的证明,使用了反证法。

然后,我们还介绍了Epigraph的定义。以上的这些,都是为了一个终极的定理:KKT条件。

KKT条件是可以被推广到很多很多场景下的。但是,在这里,我们只阐述最简单的条件,即面对NLP问题的KKT条件。

KKT条件

假设,有如下的NLP:
min ⁡ c ⊤ x  s.t.  g i ( x ) ≤ 0 ( i = 1 , … , k ) \begin{aligned} &\min \quad c^{\top} x\\ &\text { s.t. }\\ &g_{i}(x) \leq 0 \quad(i=1, \ldots, k) \end{aligned} mincx s.t. gi(x)0(i=1,,k)

如果满足以下的限定条件:

  1. g 1 , . . . , g k g_1,...,g_k g1,...,gk 是凸集;
  2. 有Slater Point;
  3. x ˉ \bar{x} xˉ是可行解;
  4. 对于 g i ( x ˉ ) = 0 g_i(\bar{x})=0 gi(xˉ)=0对应的索引所形成的集合 I I I,对所有 i ∈ I i \in I iI都有, g i ( x ) g_i(x) gi(x)存在着一个梯度 ∇ g i ( x ˉ ) \nabla g_{i}(\bar{x}) gi(xˉ)

满足以上条件之后,会有以下的等价结论:
 Then  x ˉ  is optimal  ⟺ − c ∈ cone ⁡ { ∇ g i ( x ˉ ) : i ∈ I } \text { Then } \bar{x} \text { is optimal } \Longleftrightarrow-c \in \operatorname{cone}\left\{\nabla g_{i}(\bar{x}): i \in I\right\}  Then xˉ is optimal ccone{gi(xˉ):iI}

对KKT条件的阐述

对于各个限定条件,我们都来进行说明:

g 1 , . . . , g k g_1,...,g_k g1,...,gk 是凸集:

这个要求保证了可行域也是凸集。前文非线性规划与KKT(一)中已经阐述过这个引理。

有Slater Point;

其实Slater Point就是可行解一个种类,它满足Slater Condition。

Salter’s condition: There exists an x ∈ D x \in \mathcal{D} xD such that
g i ( x ) < 0 , i = 1 , … , m , A x = b g_{i}(x)<0, i=1, \ldots, m, A x=b gi(x)<0,i=1,,m,Ax=b
也就是说,存在着一个点,满足它在可行域的内部(非任何一个边的边界上)。

为什么要叫Slater Point呢?因为Slater提出了如下的定理:

Slater’s theorem: strong duality holds, if Slater’s condition holds and the problem is convex.
当问题为凸时,可以由Slater condition 强对偶定理成立。

也就是说,Slater Point的存在保证了有强对偶是可用的。

x ˉ \bar{x} xˉ是可行解

无它,最优解必是可行解。

对于 g i ( x ˉ ) = 0 g_i(\bar{x})=0 gi(xˉ)=0对应的索引所形成的集合 I I I,对所有 i ∈ I i \in I iI都有, g i ( x ) g_i(x) gi(x)存在着一个梯度 ∇ g i ( x ˉ ) \nabla g_{i}(\bar{x}) gi(xˉ)

这个条件事实上,保证了在这点的梯度的存在的;即函数在这点上可微。因此,也就是说,本文所针对的问题,仅仅是可微时的问题。

− c ∈ cone ⁡ { ∇ g i ( x ˉ ) : i ∈ I } -c \in \operatorname{cone}\left\{\nabla g_{i}(\bar{x}): i \in I\right\} ccone{gi(xˉ):iI}

我们先给出在一个向量圆锥(cone)内的一个例子:
在这里插入图片描述
我们其实可以看出,cone其实意思就是所有起作用的 g i g_i gi(留给读者:为什么它起作用?)的法向量的线性组合。

也就是说,其实它的这个要求,代表着一件事:我们一定可以找到这个向量,使得 − c -c c ∇ g i \nabla g_i gi的线性组合。

也就是说,我们一定可以找到一个梯度,与目标函数的梯度一致。

文章浅谈最优化问题的KKT条件中详细介绍了这样一个几何理解,大家可以去看看。

告一段落

事实上,KKT在NLP的理解便告一段落了。实际上,在本文所介绍的KKT,仅仅是对一个约束条件函数在最值处可微、且为可行域凸集的情况下;其作用其实偏弱(因为限定条件强呀)。

本文仅仅是介绍了KKT在NLP处的用法,并不涉及其推导。其实KKT条件是由对偶、拉格朗日乘子法推导出来的,下面给出了一些讨论。

P.S.

国外给出了这样的讨论,搬运如下:

(1) optimality + strong duality ⟹ KKT (for all problems)

(2) KKT ⟹ optimality + strong duality (for convex/differentiable problems)

(3) Slater’s condition + convex⟹ strong duality, so then we have, GIVEN that strong duality holds,

(3a) KKT ⇔ optimality

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值