蓝桥杯 算法训练 最大最小公倍数

问题描述
已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。

输入格式
输入一个正整数N。

输出格式
输出一个整数,表示你找到的最小公倍数。
样例输入
9
样例输出
504
数据规模与约定
1 <= N <= 106。

解题思路
思路:若n 和 n-1和n-2 三个数 两两互质的话,那么结果就是这三个数的积。
根据数论知识:任意大于1的两个相邻的自然数都是互质的.
我们可以知道,当n是奇数时,n 和n-2都是奇数,n-1是偶数,那么他们三个的公约数肯定不是2,而因为这三个数是连续的,所以大于2的数都不可能成为他们或其中任意两个数的公约数了.结果就是他们三个的乘积.
而当n为偶数时,n*(n-1)* (n-2)肯定不行了,因为n和n-2都是偶数,那么只能将n-2改成n-3,即n*(n-1)* (n-3),如果这三个数两两互质那么肯定就是结果了.
但是因为n和n-3相差3,所以当其中一个数能被3整除时,另一个肯定也可以.而当其中一个不可以时,另一个肯定也不可以.而因为n为偶数,n-3为奇数,所以2不可能成为他俩的公因子。对于大于3的数,肯定就都不可能成为这三个数或者其中任意两个数的公约数了.因此只需再对3进行判断:
如果n能整除3,那么,n*(n-1)* (n-3)就肯定不行了,因为n和n-3有了公约数3,结果肯定小了,那么就只能继续判下一个即n*(n-1)* (n-4)而这样n-4又是偶数,不行继续下一个n*(n-1)* (n-5) = n^3 -6n^2 + 5n 而如果这个可以 那个其值肯定要小于(n-1)(n-2) ( n-3) = n^3 -6n^2+11n-6(对于n>1来说都成立),而(n-1)(n-2)* (n-3)由上一个奇数结论可知是一个符合要求的,因此到n-5就不用判断了。直接选答案为(n-1)(n-2) (n-3);
而n不能整除3,那么结果就是n*(n-1)*(n-3),因为n和n-3都不能整除3,此时n-1能不能整除3都无关紧要了.而对于其它数 都是不可能的.上面已证.

#include <iostream>
using namespace std;
int main()
{
    long long int n,ans;
    cin>>n;
    if(n<3)
        ans=n;
    else{
        if(n%2!=0)
            ans=n*(n-1)*(n-2);
        else if(n%3!=0)
            ans=n*(n-1)*(n-3);
        else
            ans=(n-1)*(n-2)*(n-3);
    }
    cout<<ans<<endl;
    return  0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值