- 博客(17)
- 收藏
- 关注
原创 [Go]用Golang实现经典并发模型:生产者消费者
先备知识:goroutine、go的并发与并行、channels用Golang实现这个经典的并发模型,就是要用到goroutine和channel啦~伪代码转载自:https://blog.csdn.net/yongf2014/article/details/46493129操作系统课上学过,回顾一下。(说起来,还要抽时间重学一遍OS)int in=0,out=0;s...
2019-08-08 19:35:37 1662
原创 [Go]goroutine、go的并发与并行、channels
goroutineA goroutine is a lightweight thread of execution.goroutine是一个轻量执行线程。使用go语句 start a new goroutine:go 函数名( 参数列表 )// 创建一个匿名函数的goroutinego func (msg string) { fmt.Println(msg)...
2019-08-08 15:52:03 926
原创 Ubuntu18.04下搭建go开发环境
网上信息实在太乱了……记录一下自己可行的流程。以下操作都在Ubuntu18.04下进行。我选择的开发环境是vscode+go插件。虚拟机网络问题亲测可行:https://blog.csdn.net/qi_yue_yu/article/details/52694252下载Go地址:https://golang.org/dl/下载好的压缩包在这里:...
2019-08-07 11:49:10 1872
原创 [分布式系统][事务]对3PC的理解
先回顾一下2PC的问题:同步阻塞、单点问题、数据不一致非阻塞的提交协议要如何设计?有什么要求?根据论文(见参考资料),可以得出以下结论:一个单状态转移同步提交协议是非阻塞的,当且仅当它的状态转移图满足如下两个条件:没有任何一个状态同时与COMMIT.ABORT状态相邻 不存在与COMMIT状态“邻接”的非可提交状态(邻接:可通过一次状态变换由此状态转移到彼状态;可提交状...
2019-07-27 22:52:44 625
原创 [分布式系统][事务]对2PC的理解
今天学习2PC相关知识,结合论文概念和具体的例子理解。之后会编程自己实现一下。全文关键词:提交协议、原子性、协调者、阻塞、关键缺点。P.S. 通过右侧自动目录查找相关内容更方便噢~2PC概念两阶段提交(two-phase commit,2PC)是一种保证分布式事务原子性的提交协议。回顾一下原子性:事务的所有动作要么全被执行,要么全都不执行。在数据一致性中的含义是:要么所有...
2019-07-23 22:26:30 798
原创 [分布式系统][事务]事务、ACID相关概念
今日先初步了解一下事务这块儿的概念。事务事务是对数据库进行一致可靠的访问的基本单元,由作为原子单元执行的一系列数据库读写操作、计算步骤组成,可以看作是嵌入数据库访问查询的程序。start:任意一条DML语句即事务的开启。commit:成功地结束,将之前记录在内存中的历史操作同步到底层硬盘文件。abort. rollback:失败地结束,数据库会回退到执行该事务之前的状态。...
2019-07-23 00:00:36 159
转载 机器学习算法梳理(三):决策树
信息论基础熵:表示随机变量的不确定性。H(X) = -Σp(x)lnp(x)联合熵:两个随机变量X,Y的联合分布,可以形成联合熵(Joint Entropy)。H(X, Y) = -Σp(x, y) lnp(x, y)条件熵:表示在已知随机变量 X 的条件下随机变量 Y 的不确定性。H(Y|X)=H(X,Y)−H(X)信息增益:在一个条件下,信息不确定性减少的程度。信息增益 =...
2019-05-16 21:21:49 200
转载 机器学习算法梳理(二):逻辑回归
逻辑回归与线性回归的关系二者都属于监督学习算法。但是线性回归解决回归问题,逻辑回归解决分类问题。求代价函数最优值时都可以用到梯度下降法,虽然更新规则看起来相同,但由于假设的定义不同,所以其实是完全不同的两个过程。原理类似线性回归。首先有一个预测函数,然后构造损失函数,求和得代价函数,然后采用一些方法求代价函数最小值。解决分类问题,输出值永远在0-1之间。假设函数:...
2019-05-13 21:19:57 156
原创 机器学习算法梳理(一):基础扫盲&线性回归
基础扫盲监督学习:训练数据有标记信息的学习典型问题有回归、分类。无监督学习:训练数据没有标记信息的学习典型问题有聚类。泛化能力:学得模型适用于新样本的能力训练样本越多,就越有可能获得强泛化能力模型。“偏差-方差分解”(bias-variance decomposition)是解释泛化性能的一种重要工具。偏差(bias):预测输出与标记间的差。描述算法本身...
2019-05-12 19:13:01 180
原创 win10下创建及配置虚拟环境(二):使用Anaconda
另一种创建虚拟环境的方法是使用Anaconda。1.下载安装Anacondahttps://www.anaconda.com/download/如果需要python3.6或3.5,那么可以先下载3.7,后面会讲怎么修改版本。2.修改python版本由于后续我需要使用tensorflow等包,其不支持python3.7,故我要修改为3.6版本。根据官方教程(官网下载页面有提示),下载安装完...
2019-02-02 17:04:28 3093
原创 【问题解决】pycharm选择了解释器,却不显示安装好的包
我从github下载了一个程序包(位置:D:\zl\python)。将文件夹直接拖到pycharm,打开了这个项目。然后要做的应该是设置环境和python解释器。在此之前我已经通过terminal,用Anaconda创建了一个虚拟环境v36(位置:D:\zl\anaconda\envs),v36文件夹中的python.exe就是对应的python解释器。于是按照网上的各种教程设置pyc...
2019-02-02 11:20:11 23219 13
转载 vars()函数用法
python内置函数。vars() 函数返回对象object的属性和属性值的字典对象。vars([对象])当函数不接收参数时,其功能和locals函数一样,返回当前作用域内的局部变量。当函数接收一个参数时,参数可以是模块、类、类实例,或者定义了__dict__属性的对象。#作用于模块>>> import time>&a
2019-02-01 22:27:36 16602
原创 argparse库
argparse是一个参数处理库。导入该模块import argparse 使用该模块的第一步就是创建一个解释器对象,解析器类是 ArgumentParserap = argparse.ArgumentParser()定义参数:add_argument()方法ap.add_argument(name or flags…[, action][, nargs][, const][, d...
2019-02-01 22:16:09 719
原创 【项目实践】图像检索系统 Image Retrieval Engine Based on Keras(一)
源代码:https://github.com/willard-yuan/flask-keras-cnn-image-retrieval.git图像检索基础小项目,我用来入门。实践步骤:搭建环境运行程序啃代码搭建环境下载Anaconda,根据官方指导修改内嵌python版本为3.6.8。用Anaconda创建虚拟环境v36,在v36下安装Theano. tensorflow. ke...
2019-02-01 18:12:30 1671 2
原创 win10下创建及配置虚拟环境(一)
现在创建完成后觉得挺简单的,但是其实过程很曲折。记录一下成功过程和注意点。[注:本文创建的虚拟环境不是使用conda]1. 设置环境变量“我的电脑”属性→“高级系统设置”→“环境变量”→新建变量名随意,变量值为你想要将虚拟环境存放的位置。这一步意义在于,设置后再执行workon命令连接的便是你自己设置的虚拟环境保存地址,而不是默认的(默认的在c盘)。2. 安装python如果后续要...
2019-01-22 14:28:03 5435
原创 “三维装箱”相关文献、报告记录
Martello, S., D. Pisinger, D. Vigo. 2000. The three-dimensional bin pack-ing problem. Oper. Res. 48 256–267.关于该问题的比较全面的介绍Erratum to “The Three-Dimensional Bin Packing Problem”: Robot-Packable and O...
2019-01-20 22:23:27 1130
转载 NP-hard问题概念理解
在阅读“三维装箱”问题的论文时,接触到NP-hard problem的概念。该博文记录与其相关的一些概念理解。时间复杂度:指当问题规模扩大后,程序需要的时间的增长程度,而不是表示一个程序运行需要花的时间。多项式级时间复杂度:O(1),O(log(n)),O(n^a)等。因为规模n出现在底数的位置。P问题:可以在多项式级时间复杂度内解决NP问题:可以在多项式级时间复杂度内被验证NP-har...
2019-01-20 22:16:59 25448
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人