- 博客(55)
- 资源 (1)
- 收藏
- 关注
原创 MATLAB中区域属性函数regionprops及使用示例
一、regionprops函数及应用一、regionprops函数及应用regionprops 函数在 MATLAB 中是一个强大的工具,用于计算和分析二值图像(或更一般地说,标注矩阵)中连通区域的属性。当处理二值图像时,连通区域通常对应于图像中的前景对象,而背景则为另一个值(通常是0)。可以在matlab的命令窗口中输入help regionprops获得该函数的帮助信息。其基本语法如下:properties) 测量标注矩阵 L中每一个标注区域的一系列属性。
2024-10-13 13:02:17 352
原创 MATLAB中的imshow函数的使用方法及实例应用
一、imshow函数imshow是MATLAB工具软件中用于显示图像的函数,它支持多种图像类型,包括灰度图像、真彩色图像、索引图像等。以下是对imshow常用用法:imshow(I) 在图窗中显示灰度图像 I。imshow 使用图像数据类型的默认显示范围,并优化图窗、坐标区和图像对象属性以便显示图像。imshow(I[low high]) 显示灰度图像 I,以二元素向量 [low high] 形式指定显示范围。小于low的值显示为黑色,大于high显示为白色。
2024-08-08 18:19:39 1917
原创 数字图像处理和机器视觉中的常用特殊矩阵及MATLAB实现详解
在数字图像处理和机器视觉实践中,为了提高编程效率,MATLAB 提供了多种方式来创建特殊的矩阵,如全零矩阵、全1矩阵、单位矩阵、空矩阵个、序列矩阵、稀疏矩阵、随机矩阵等。这些函数在图像模拟、统计分析、优化算法等多个领域都有广泛的应用。通过调整参数和结合MATLAB的其他功能,可以灵活地生成各种满足特定数字图像处理需求的随机矩阵。
2024-07-23 23:18:33 1582
原创 MATLAB绘制方波、锯齿波、三角波、正弦波和余弦波、
一、引言一、引言MATLAB是一种具有很强的数值计算和数据可视化软件,提供了许多内置函数来简化数学运算和图形的快速生成。在MATLAB中,你可以使用多种方法来快速绘制正弦波、方波和三角波。以下是一些基本的示例,展示了如何使用MATLAB的命令来实现正弦波、方波和三角波的快速绘制,大家可以在此基础上进行改进,为学习、科研和工作提供便利。二、绘制正弦波和余弦波可以通过sin函数、cos函数和plot来进行绘制,MATLAB详细编程如下。clear all;close all;clc;
2024-07-23 11:46:55 3210
原创 二值图像的面积求取的三种方法及MATLAB实现
它通过对图像中每个像素的面积求和来估算图像中所有on像素的面积。需要注意的是,由于不同像素图案的加权不同,返回的面积值可能与实际像素数不完全相同,但大致上反映了图像中对象的面积。:遍历法是通过直接遍历图像中的每一个像素,统计值为1(或被视为on)的像素个数,从而估算出图像中对象的面积。面积在数字图像处理中经常用到,在MATLAB中,计算二值图像的面积通常可以通过两种主要方法实现:遍历法和直接利用。fprintf('图像中前景的总面积(像素计数): %d\n', totalArea);% 初始化面积计数器。
2024-09-29 23:16:27 754
原创 最近邻法概念、优缺点及在彩色图像放大和缩小中的应用
当需要对图像进行放大、缩小、旋转等几何变换时,如果变换后的像素坐标不是整数,就需要通过插值来确定该位置的像素值。最近邻法插值就是直接选取距离目标像素坐标最近的已知像素值作为插值结果。在MATLAB图像中,对图像进行放大和缩小可以使用imresize实现,下面给出一个彩色图像使用最近邻法进行放大的巧妙实例。如对一个两行两列的彩色图像使用最近邻法放大64倍,然后再将放大后图像缩小两倍,可以使用以下MATLAB程序实现。figure,imshow(rgb64),title('放大64倍图像 ');
2024-09-27 23:42:25 374
原创 巴特沃斯滤波器在信号处理中应用
一、引言巴特沃斯滤波器(Butterworth Filter),是滤波器的一种,其主要特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯蒂芬·巴特沃斯(StephenButterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的,也被称作最大平坦滤波器,在于其通频带内的频率响应曲线最大限度平坦,而在阻频带则逐渐下降为零。巴特沃斯滤波器的公式由以下形式定义:其中,H(w)是滤波器的传递函数,w是复频域变量,w_c是截止频率,N是滤波器的阶数。
2024-09-25 20:58:25 393
原创 基于HOUGH Transform(霍夫变换)的圆形目标的判别
在数字图像处理中,有时候除了目标尺寸不同外,还经常会出现不同形状(如圆形、方形、菱形等)的目标检测物,有时确定图像中的圆形或近圆形目标是十分有用的。霍夫变换是检查圆形目标的常用方法之一,下面给出一个应用该方法进行圆形目标检测的实例。%[centers,radii] = imfindcircles(I,[60 100],'ObjectPolarity','dark')%默认Sensitivity为0.85。
2024-09-22 12:57:51 429
原创 彩色图像面积计算一般方法及MATLAB实现
一、引言在数字图像处理中,经常需要获取感兴趣区域的面积属性,下面给出图像处理的一般步骤。1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示二、程序代码%面积计算clear all;%清除所有变量close all;%关闭所有图形窗口clc;%清屏%读入图像imshow(I);%使用最大类间方差法对图像进行二值化(注意:针对不同的灰度图像可能采用不同的二值化策略)BW=~BW;
2024-09-22 11:04:59 526
原创 双三次插值及MATLAB实现
双三次插值(),又叫双立方插值。在这个分支中,是空间中最常用的方法。在这种方法中,f在点 (x0y0) 的值不仅考虑其直接邻接点对其的影响,该方法通过矩形网格中最近的十六个采样点的得到,在这里需要使用两个多项式插值三次函数,每个方向使用一个。双三次插值是一种更加复杂的插值方式,它能创造出比更平滑的图像边缘。双三次插值方法通常运用在一部分和数码相机中,对原图像或原图像的某些区域进行放大。
2024-09-16 22:02:13 721
原创 双线性插值概念及MATLAB实现
双线性插值是一种在数字图像处理中常用的方法,用于对图像进行缩放、旋转等操作时的像素值插值。(x1,y1),(x1,y2),(x2,y1), 和(x2,y2)。它们的像素值分别为 Q11, Q12, Q21, 和 Q22。在数学上,双线性插值是有两个变量的插值函数的。% 使用interp2进行双线性插值(注意这里X和Y是向量,Z是矩阵)% 因为X和Y是向量,所以MATLAB会假设它们构成了一个规则的网格。disp(['插值后的像素值 P = ', num2str(P)]);
2024-09-13 17:24:15 527
原创 数学形态学基本运算(腐蚀、膨胀、开运算和闭运算)概念和MATLAB应用实例
figure('Name', '选择正方形结构元素w=8', 'NumberTitle', 'off', 'Color', 'w');subplot(2,3,4),imshow(BW_opened ),title('开运算图像');subplot(2,3,5),imshow(BW_closed ),title('闭运算图像');subplot(2,3,3),imshow(BW_eroded ),title('膨胀图像');subplot(2,3,1),imshow(BW),title('原始图像');
2024-09-05 13:53:41 973
原创 《数字图像处理与机器视觉》案例(五) ---基于傅里叶变换和的数学形态学的水果彩色图像边缘提取方法
基于傅里叶变换和数学形态学的水果边缘提取方法结合了频域分析和形态学处理的优点,能够有效地提取水果图像中的边缘信息。text(textX, textY, sprintf('周长: %.1f', stats(k).Perimeter), ...%bw_fiil= bwareaopen(bw_fill, 2000000);
2024-08-13 14:59:35 865
原创 傅里叶变换结合数学形态学进行边缘增强和边缘提取
一、前言傅里叶变换是图像变换的一种常用方法,傅里叶变换在图像处理中扮演着核心角色,它通过将图像从空间域转换到频率域,获取图像的频率成分,因为有些特征在空间域很难处理,但在频率域比较容易处理。这一转换有助于分析图像中的高频(细节、边缘)和低频(平滑区域)信息,进而实现图像去噪、压缩、特征提取及图像增强等处理。通过修改频率域中的信息,可以针对性地优化图像质量,再经逆傅里叶变换回空间域,得到我们希望得到的处理后的图像。傅里叶变换本身通常不直接用于边缘提取,因为它是一种频域分析工具,主要用于分析图像的频率成分。
2024-08-11 12:37:39 671
原创 imadjust 、histeq、title、imshow和figure的综合应用
在利用MATLAB进行图像处理程序编写中,imadjust、histeq、title、imshow以及figure等函数经常被综合运用于图像处理与可视化工作。以下是一个具体的示例,它详细展示了如何运用这些函数来进行图像显示、调整图像对比度、进行直方图均衡化,并将处理前后的图像及其相关信息(图像的灰度平均值、最大值和最小值和灰度直方图)清晰地展示出来。
2024-08-08 12:55:26 881
原创 polyfit和polyval进行曲线拟合
基本用法:polyfit(x,y,n)。用多项式求过已知点的。polyfit函数是matlab中用于进行。(其图形为一曲线)使在原离散点上尽可能接近给定的值。,可为行向量、矩阵,n为你要拟合的阶数。,可为行向量、矩阵,y为源数据点对应的。,其中x为源数据点对应的。
2024-08-04 17:53:53 660
原创 基于edge、bwmorph和bwboundaries函数的三种图像边缘检测方法及应
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。本文给出edge和bwmorph两个函数进行边缘检测的基本用法,并给出一个应用示例。
2024-08-02 21:21:00 839
原创 生产计划问题的不同最优化工具软件求解
对优化问题进行求解时,可以方便建立其数学模型,调用minimize和maximize函数进行建立的数学模型的最小值和最大值,但其只给出结果,没有求解报告。3. MATLAB优化求解工具箱(Optimization Toolbox)是MATLAB的一个重要扩展,它提供了多种优化算法和工具,用于解决线性规划、非线性规划、整数规划、多目标优化等复杂优化问题。)推出的,LINGO是一款强大的数学规划和优化软件,主要用于解决线性规划、非线性规划、整数规划以及二次规划等问题。设每天生产甲产品x件,乙产品生产y件。
2024-08-02 14:15:49 860
原创 数字图像边缘曲率计算及特殊点检测
目前,数字图像边缘曲率检测的常用方法主要有基于微分几何的方法、基于图像处理的方法以及基于机器学习的方法等。在数字图像处理中,由于图像数据本质上是离散的(即像素值是在二维网格上的离散点),我们不能直接应用连续域中的微积分理论。% 注意:此代码中的曲率计算进行了简化,在实际应用中,可能需要使用更精确的数值方法%%或基于几何的曲率估计。
2024-08-01 20:55:47 1475
原创 链码简介及MATLAB提取图像链码
将这些方向数依照一个方向(逆时针或顺时针)循环以使它们所构成的自然数的值最小,将转化后所对应的链码起点作为这个边界的归一化链码的起点。但在实际应用中,由于起点和终点重合,当用链码来描述闭合边界时,通常不关心起点的具体位置,起点位置的变化只引起链码的循环位移。如(c)图所示是一个4方向链码,假如从黑点沿着逆时针开始,其链码为3 0 0 3 0 1 1 2 1 2 3 2,如果从红点沿着逆时针开始,则其链码为2 1 2 3 2 3 0 0 3 0 1 1。% 计算方向(这里简化了方向判断,只考虑水平和垂直)
2024-07-31 22:58:54 1036
原创 reshape函数及MATLAB应用
将A重构为一个sz1×...×szN数组,其中sz1,...,szN指示每个维度的大小。可以指定[]的单个维度大小,以便自动计算维度大小,以使B中的元素数与A中的元素数相匹配。例如,如果A是一个 10×10 矩阵,则reshape(A,2,2,[])将A的 100个元素重构为一个 2×2×25 数组。)用大小向量z重构A以定义size(B)。例如,reshape(A,[2,3])将A重构为一个 2×3 矩阵。但上面程序稍显复杂,可以使用MATLAB的reshape将向量重构为矩阵,方法简单且易于理解。
2024-07-28 00:28:50 501
原创 MATLAB图像处理分析基础(一)
对于新学习MATLAB软件的同学,在进行数字图像处理和分析时对一些基本命令的综合运用还有一些问题,下面给出一个简单示例把图像处理分析中中常用的一些基本函数(图像读取、显示、保存、直方图显示、图像工具箱、对比度、均值、最大值、最小值、标准差等)进行讲解。
2024-07-20 23:28:34 1286 1
原创 通过角点进行水果的果梗检测一种新方法
众所周知,一般果梗和果实在边缘处角度有较大突变,可以通过合适方法对原始图像进行角点提取,然后再进行果梗的提取和测量。
2024-07-19 18:49:30 887
原创 角点检测及MATLAB实现
角点检测是计算机视觉中的一个重要技术,它用于识别图像中具有明显特征点的位置,这些点在图像中通常代表物体的拐角、边缘或显著特征。基于灰度图像的角点检测主要依赖于计算边缘的曲率或考虑像素邻域点的灰度变化来判断角点。Harris角点检测算法是基于图像灰度的方法,通过计算图像中的每个像素点的Harris响应值来确定角点。基于二值图像的角点检测将二值图像作为单独的检测目标,可以使用各种基于灰度图像的角点检测方法。角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。
2024-07-16 11:21:07 1125 4
原创 方波的傅里叶变换及方波的MATLAB实现
傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数正弦和/或余弦函数)或者它们的积分的线性组合。傅里叶变换是一种线性的积分变换。它的理论依据是:任何连续周期信号都可以由一组适当的正弦曲线组合而成,即使用简单的正弦、余弦函数,可以拟合复杂函数。为什么要进行傅里叶变换?傅里叶变换是一种数学工具,能够将时域信号转换为频域信号。具体来说,傅里叶变换将时域波形信号转换为离散的频率幅值,这些频率幅值构成了频域表示。。
2024-07-14 13:50:54 1596
原创 PPI(每英寸像素数)、DPI(每英寸点数)和Pixel(像素)的区别和联系?
因此,在图像尺寸不变的情况下,增加图像的像素数可以提高PPI值,从而提高图像的清晰度。Pixel,即像素,是图像显示的基本单位,也是计算机系统中数字化图像的最小组成单元。DPI越低,扫描的清晰度越低,由于受网络传输速度的影响,web上使用的图片都是72dpi,但是冲洗照片不能使用这个参数,必须是300。从上可知同样尺寸的显示器,其显示器的分辨率越高,其PPI越大,图像的细节越丰富,显示效果越好。理论上,人眼的分辨率极限为0.1mm,换算成PPI为254,即每英寸有254个像素就超过了人眼的分辨率。
2024-07-09 23:21:02 1272
原创 人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系
深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的有效表示,而这种使用相对较短、稠密的向量表示叫做分布式特征表示(也可以称为嵌入式表示)。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。又称为机器智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以与。核心,是使计算机具有智能的根本途径。
2024-07-07 22:27:26 1333 5
原创 数字图像处理、机器视觉(计算机视觉)、计算图形学概念
-指通过机器代替人眼来做判断。从输入到输出来看,机器视觉输入的是图像,输出的也是知识。有时计算机视觉(Computer Vision)和机器视觉混用,但一般机器视觉梗偏向于工业自动化领域,而计算机视觉计算机视觉的应用范围更广泛,不仅限于工业自动化领域,还包括医学影像分析、人脸识别、自动驾驶、虚拟现实等多个领域。)--又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性,达到人们所要求的预期结果。从输入到输出来看,数字图像处理输入的是图像,输出的也是图像。
2024-07-04 08:41:47 688
原创 《数字图像处理与机器视觉》案例四 基于分水岭算法的粘连物体的分割与计数
一般来讲,直接应用分水岭分割算法的效果往往并不好,如果在图像中对前景对象和背景对象进行标注区别,再应用分水岭算法会取得较好的分割效果。% 以SE3作开运算。
2024-07-04 08:04:27 1020 7
原创 《数字图像处理与机器视觉》案例三 (基于数字图像处理的物料堆积角快速测量)
物料堆积角是反映物料特性的重要参数,传统的测量方法将物料自然堆积,测量物料形成的圆锥表面与水平面的夹角即可,该方法检测效率低。随着数字成像设备的推广和应用,应用数字图像处理可以更准确更迅速地进行堆积角测量。首先,通过数字图像处理设备获取物料堆积图像,注意拍摄角度和光照情况,保证原始图像质量。其次,读入彩色图像,进行图像二值化,边缘检测,拟合直线,计算堆积角。
2024-07-01 13:33:38 466 2
原创 《数字图像处理与机器视觉》案例二(基于边缘检测和数学形态学焊缝图像处理)
subplot(2,3,3),imshow(IgrayEdge),title('边缘图像1');subplot(2,3,6),imshow(obj),title('分割后的焊缝图像');subplot(2,3,2),imshow(Igray),title('灰度图像');subplot(2,3,4),imshow(im2),title('边缘图像2');subplot(2,3,1),imshow(I),title('焊缝图像');title('闭运算');
2024-06-28 09:34:51 561 1
原创 《数字图像处理与机器视觉》案例一(库尔勒香梨果梗提取和测量)
果梗是判断水果新鲜程度的重要标志,对水果的贮藏和保鲜也具有重要的参考价值。库尔勒香梨分级标准中对果梗有明确要求,要求果梗完整,但由于库尔勒香梨果梗颜色与果实接近,用传统的简单阈值分割方法难以提取。因此,下面基于数学形态学开发一个能实现其果梗提取和测量的程序。
2024-06-23 15:47:25 789 1
原创 图像分割(四)---(图像显示、灰度直方图和三维灰度图综合分析选取最佳分割方法)
对彩色图像进行分割的一种常用方法,是先把彩色图像转灰度图像,然后再选择合适的阈值进行二值分割。首先读入一幅彩色图像fruit.jpg,然后对其各通道的灰度直方图进行分析,并使用imtool进行分析,利用surf绘制R-B的三维灰度图(水果的灰度值明显在背景上方,为阈值分割提供便利),通过imhist发现R-B后的图像具有较好的双峰特性。本次彩色图像分割,充分利用MATLAB中的surf、imtool和imhist各自特点对彩色图像进行分析,确定了最优分割方案,获得了较好分割效果。'显示灰度图像灰度直方图'
2024-06-22 20:08:31 673
原创 RGB彩色模型理解与编程实例
和绿(0,1,0)混合可以合成黄色(1,1,0);绿(0,1,0)和蓝(0,0,1)混和可以得到青色(0,1,1);红(1,0,0)混合绿(0,1,0)可以得到深红色。当R、G和B三分量值都相等时,就显示为灰度,其中黑色(0,0,0),白色(1,1,1)。生成一幅128*128的RGB图像,该图像左上角为白色,左下角为蓝色,右上角为绿色,右下角为黄色。figure,imshow(rgb),title('RGB彩色图像');%R通道矩阵128*128矩阵初始化为0。%G通道矩阵128*128矩阵初始化为0。
2024-06-21 22:17:32 1367 1
原创 图像分割(三)-RGB转HSV后图像分割方法
故改变思路,先将RGB彩色图像转换为HSV图像,提取H(色调)和S(饱和度)分量,发现色调分量的灰度直方图具有比较明显的双峰特性且谷底平且宽,因此对其采用OTSU方法进行二值化,然后对其进行孔洞填充,取得了比较理想的图像分割效果。常用彩色模型有RGB和HSV模型,有时候在RGB颜色空间进行背景分割比较困难的问题,转换为HSV模型然后对色调和饱和度图像进行处理会得到比较理想的处理结果,下面通过一个实例讲解该方法的MATLAB实现,该方法对其他图像检测也具有一定的参考价值。
2024-06-20 14:28:01 637
原创 Open3D 点云体素化
o3d.visualization.draw_geometries([voxel_grid], window_name="从点云中构建体素",mesh_show_back_face=False) # 显示点云。mesh_show_back_face=False) # 显示体素。o3d.visualization.draw_geometries([pcd], window_name="点云",
2024-06-18 16:16:33 330
原创 彩色图像批处理实例
处理的主要步骤:1. 六张彩色图像存放在flower文件夹中,图像文件名为1.jpg 2.jpg 3.jpg 4.jpg 5.jpg 6.jpg 2.使用uigetfile读取图像;2)图像二值化 3)图像形态学运算去除噪声 4)背景分割后的彩色图像 5)将分割后彩色图像以指定格式保存到flower文件夹下。
2024-06-18 11:56:15 516
原创 图像分割计数的一种简便方法
该方法步骤较为复杂,下面提出一种大米图像分割计数的一种简便方法。该方法的主要步骤:读入MATLAB自带rice.png图像,然后使用imbinarize对其进行二值化,发现使用局部自适应阈值处理效果好,然后使用数学形态学命令去除噪声,对去噪后图像进行图像标记和计数,最后对原始灰度图像rice.png的主要图像处理过程进行显示。'使用局部自适应阈值对图像进行二值化''使用OTSU方法进行图像二值化'%大米图像分割和计数的一种新方法。'清除与边界连通的大米个数为''清除与边界连通的大米'
2024-06-17 21:39:08 506 1
原创 边缘检测(一)-灰度图像边缘检测方法
首先,读入一幅灰度图像,然后直接使用Canny算子对其进行边缘检测,发现其检测效果不好,故改变思路,先将灰度图像转换为二值图像,然后通过数学形态学平滑边缘后再进行边缘检测。算法主要步骤:读入灰度图像,使用最大类间方差法对图像二值化,然后反色,并填充二值图像孔洞。灰度图像边缘检测是数字图像处理与机器视觉中经常遇到的一个问题,边缘检测是否连续、光滑是判断检测方法优劣的一个重要标准,下面通过一个实例提供灰度图像边缘检测方法,该方法对其他图像检测也具有一定的参考价值。'对灰度图像直接使用canny算子边缘检测'
2024-06-17 13:25:41 742
彩色图像批处理实例(自然场景下)
2024-06-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人