5. 强化学习之——策略优化

本文介绍了基于策略的强化学习,包括策略梯度的基础知识、降低方差的方法和Actor-Critic策略。讨论了策略梯度的优化目标、蒙特卡罗策略梯度及如何利用baseline和Critic来减小方差。还提到了现代RL算法如A2C、A3C、TRPO、PPO和SAC,以及策略和价值函数学派的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程大纲

基于策略的强化学习:前面讲的都是基于价值的强化学习,这次讲基于策略函数去优化的强化学习

蒙特卡罗策略梯度

如何降低策略梯度的方差

Actor-Critic:同时学习策略函数和价值函数

基于策略的强化学习基础知识

Value-based RL 与 Policy-based RL:

Policy-based RL 的优势与劣势:

策略的分类:

(1)确定性策略

(2)概率分布性策略

 对策略进行优化的过程中,优化目标是什么?

给定一个带参数的策略逼近函数(类似于值函数逼近)\pi_{\theta}(s, a),我们就是要找到最优的 \theta 

怎么去评价一个策略 \pi_{\theta} 呢?【废话,当然是用值函数啊】

从环境的角度去看:

(1)对于 episodic 的环境:可以用最开始的那个 value

(2)对于 continuing 环境:可以用平均的 value;也可以用平均的 reward

从轨迹的角度去看:

怎么去优化我们的目标方程 J(\theta) 呢?

&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值