xgboost使用train方法训练模型绘制学习曲线的方法

本文介绍了如何使用XGBoost的train方法进行模型训练,并展示了在无法使用fit方法的bst.evals_result()情况下,如何绘制学习曲线的过程。通过这种方法,读者可以理解在特定场景下训练XGBoost模型并监控其性能的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用train方法训练模型后,无法使用fit方法的bst.evals_result(),报错如下:

'Booster' object has no attribute 'evals_result'

采用以下方法:


immport xgboost as xgb
param={...}
xg_train = xgb.DMatrix(x_train, label=y_train)
xg_test = xgb.DMatrix(x_test, label=y_test)
evals_result = {}#记录训练集误差和验证集误差
bst=xgb.train(param, 
          xg_train,
          evals=[(xg_train, 'Train'), (xg_test, 'Valid')],
          num_boost_round=num_round,
          evals_result=evals_result,
          verbose_eval=True)
#输出训练集误差和验证集误差
print(evals_result)

绘制学习曲线:

train_loss=list(evals_result['Train'].values())[0]
valid_loss=list(evals_result['Valid'].values())[0]
x_scale=[i for i in range(len(train_loss))]
plt.figure(figsize=(10,10))
plt.title('loss')
plt.plot(x_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值