稳态的稳定性与非稳定性

d f d y < 0 \frac{df}{dy} < 0 dydf<0时,意味着 f ( y ) f(y) f(y) 对于 y y y是单调递减的,即随着 y y y增加,函数 f ( y ) f(y) f(y) 减小。对于微分方程 d y d t = f ( y ) \frac{dy}{dt} = f(y) dtdy=f(y),这通常意味着系统会朝向某个稳定点或稳态发展。具体来说:

1. 物理直觉

  • f ( y ) f(y) f(y) y y y 增加而减小时,系统的速度 d y d t \frac{dy}{dt} dtdy逐渐变小。这种情况表明系统趋于减速,最终可能在某个点(平衡点)停下来。这通常对应于稳定点。

2. 稳定性的解释

  • 如果平衡点 y ∗ y^* y 满足 f ( y ∗ ) = 0 f(y^*) = 0 f(y)=0 d f d y \frac{df}{dy} dydf y ∗ y^* y 处为负,这意味着在 y ∗ y^* y 附近,当 y y y 稍微增加时, d y d t \frac{dy}{dt} dtdy 会变为负值,从而系统会将 y y y拉回到 y ∗ y^* y;同理,当 y y y 稍微减小时, d y d t \frac{dy}{dt} dtdy会变为正值,从而系统会将 y y y 推回到 y ∗ y^* y。这种反馈机制导致系统在 y ∗ y^* y 处是稳定的。

3. 数学证明

  • 在线性系统分析中,如果 y ∗ y^* y是平衡点,即 f ( y ∗ ) = 0 f(y^*) = 0 f(y)=0,我们可以考虑 y y y y ∗ y^* y附近的小扰动 y = y ∗ + δ y y = y^* + \delta y y=y+δy。对于小扰动 δ y \delta y δy
    d ( δ y ) d t = f ( y ∗ + δ y ) ≈ f ( y ∗ ) + d f d y ∣ y ∗ δ y = d f d y ∣ y ∗ δ y . \frac{d(\delta y)}{dt} = f(y^* + \delta y) \approx f(y^*) + \frac{df}{dy}\bigg|_{y^*} \delta y = \frac{df}{dy}\bigg|_{y^*} \delta y. dtd(δy)=f(y+δy)f(y)+dydf yδy=dydf yδy.
  • 如果 $\frac{df}{dy}\bigg|_{y^} < 0$,则 δ y \delta y δy 的增长率是负的,意味着 δ y \delta y δy 会衰减,即 y y y 会逐渐回到 y ∗ y^* y,所以平衡点 $y^$ 是稳定的。

总结

d f d y < 0 \frac{df}{dy} < 0 dydf<0 通常意味着系统有一个稳定的平衡点,这是因为在这种情况下,任何偏离平衡点的扰动都会被纠正,使得系统返回平衡点。

  • 23
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值