十种机器学习算法:代码示例和可视化

机器学习是数据科学的一个核心领域,涉及多种算法和方法。本文旨在提供十种常用机器学习算法的代码示例,使用Python的Scikit-Learn库,并展示简单的数据集,使代码可直接运行并跑出可视化结果。

1. 线性回归 (Linear Regression)
线性回归是一种预测连续值的算法,非常适合用于回归问题。

from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import numpy as np

#创建数据
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 3, 2.5, 5])

#创建并训练模型
model = LinearRegression()
model.fit(X, y)

#预测
predictions = model.predict(X)

#可视化
plt.scatter(X, y, color=‘blue’)
plt.plot(X, predictions, color=‘red’)
plt.title(‘Linear Regression’)
plt.xlabel(‘X’)
plt.ylabel(‘y’)
plt.show()

2. 逻辑回归 (Logistic Regression)
逻辑回归通常用于分类问题,尤其是二分类问题。

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载Iris数据集
X, y = load_iris(return_X_y=True)
y = y[:100] # 只选取前两类花
X = X[:100, :2]

#创建并训练模型
model = LogisticRegression()
model.fit(X, y)

#预测
predictions = model.predict(X)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Logistic Regression’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

3.决策树 (Decision Tree)
决策树是一种常用于分类和回归的算法,易于理解和解释。

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = DecisionTreeClassifier()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Decision Tree’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

4. 随机森林 (Random Forest)
随机森林是一种集成学习算法,通常用于分类和回归任务。

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载Iris数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = RandomForestClassifier()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Random Forest’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

5. K-最近邻 (K-Nearest Neighbors, KNN)
KNN是一种简单的机器学习算法,通常用于分类。

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = KNeighborsClassifier()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘K-Nearest Neighbors’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

6. 支持向量机 (Support Vector Machine, SVM)
支持向量机是一种强大的分类算法,适用于复杂数据集。

from sklearn.svm import SVC
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = SVC()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Support Vector Machine’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

7. 朴素贝叶斯 (Naive Bayes)
朴素贝叶斯是一种基于贝叶斯定理的简单概率分类器,常用于文本分类。

from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = GaussianNB()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Naive Bayes’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

8. K-均值聚类 (K-Means Clustering)
K-均值是一种流行的聚类算法,用于将数据分组成多个簇。

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt

#创建一些简单的数据
X = np.array([[1, 2], [1, 4], [1, 0],
[4, 2], [4, 4], [4, 0]])

#创建并训练模型
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_)
plt.title(‘K-Means Clustering’)
plt.xlabel(‘X’)
plt.ylabel(‘y’)
plt.show()

9. 主成分分析 (Principal Component Analysis, PCA)
PCA是一种用于降维的技术,可以提取数据中最重要的特征。

from sklearn.decomposition import PCA
import numpy as np
import matplotlib.pyplot as plt

#创建一些简单的数据
X = np.random.rand(50, 3)

#创建并应用PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

#可视化
plt.scatter(X_pca[:, 0], X_pca[:, 1])
plt.title(‘Principal Component Analysis’)
plt.xlabel(‘Component 1’)
plt.ylabel(‘Component 2’)
plt.show()

10. 梯度提升机 (Gradient Boosting Machine, GBM)
梯度提升机是一种用于回归和分类的强大的集成学习方法。

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

#加载数据集
X, y = load_iris(return_X_y=True)
X = X[:, :2] # 为了可视化,仅使用前两个特征

#创建并训练模型
model = GradientBoostingClassifier()
model.fit(X, y)

#可视化
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Gradient Boosting Machine’)
plt.xlabel(‘Feature 1’)
plt.ylabel(‘Feature 2’)
plt.show()

以上是十种常见的机器学习算法的简介、代码示例和可视化。这些示例提供了每种算法的基本应用,帮助理解它们在实际问题中的运用。

  • 34
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习梯度提升分类算法可视化可以通过以下步骤实现: 1. 准备数据集:选择一个分类问题并准备数据集,其中训练集和测试集应该是相互独立的。 2. 训练模型:使用梯度提升分类算法训练模型,可以使用Python中的sklearn库中的GradientBoostingClassifier类。 3. 可视化模型:使用sklearn库中的plot_tree函数或plot_partial_dependence函数可视化模型。 4. 分析结果:分析可视化结果,了解模型如何进行预测和哪些特征对预测结果影响最大。 下面是一个简单的Python代码示例,用于可视化梯度提升分类算法模型: ```python from sklearn.datasets import load_breast_cancer from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import plot_tree from sklearn.inspection import plot_partial_dependence # 准备数据集 data = load_breast_cancer() X = data.data y = data.target # 训练模型 model = GradientBoostingClassifier() model.fit(X, y) # 可视化模型 plot_tree(model.estimators_[0, 0]) plot_partial_dependence(model, X, features=[0, 1], grid_resolution=10) # 分析结果 # 进行预测,并分析预测结果 ``` 在这个示例中,我们使用了乳腺癌数据集,训练了一个梯度提升分类算法模型,然后使用plot_tree函数可视化了第一棵决策树,并使用plot_partial_dependence函数可视化了第1和2个特征的偏差。最后,我们将分析预测结果以了解模型如何进行预测和哪些特征对预测结果影响最大。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值