机器学习代码示例2(含数据和可视化)

除了前面提到的十种机器学习算法外,还有许多其他重要的算法。以下是一些额外的机器学习算法列表:

1.支持向量回归 (Support Vector Regression, SVR):与SVM类似,但用于回归问题。

2.岭回归 (Ridge Regression):一种通过添加L2正则化项来改进线性回归的算法。

3.Lasso回归 (Lasso Regression):与岭回归类似,但使用L1正则化。

4.弹性网络 (Elastic Net):结合了岭回归和Lasso回归的特点,使用L1和L2正则化。

5.最小角回归 (Least Angle Regression, LARS):用于高维数据的回归分析。

6.AdaBoost (Adaptive Boosting):一种将多个弱学习器组合成强学习器的集成方法。

7.XGBoost (eXtreme Gradient Boosting):一种高效的GBM实现,广泛用于数据科学竞赛。

8.:一种比传统GBM更快的实现,特别适用于处理大规模数据。

9.CatBoost:专门为处理分类特征而设计的高效GBM实现。

10.随机梯度下降 (Stochastic Gradient Descent, SGD):一种用于大规模和高维数据集的优化技术。

11.神经网络 (Neural Networks):构成深度学习核心的算法,适用于各种复杂的模式识别任务。

12.卷积神经网络 (Convolutional Neural Networks, CNNs):特别适用于图像处理。

13.递归神经网络 (Recurrent Neural Networks, RNNs):适合处理序列数据,如时间序列或文本。

14.长短期记忆网络 (Long Short-Term Memory, LSTM):一种特殊类型的RNN,有效处理长序列数据。

15.门控循环单元 (Gated Recurrent Units, GRUs):与LSTM类似,但结构更简单。

16.自编码器 (Autoencoders):用于无监督学习,特别是数据降维和特征提取。

17.生成对抗网络 (Generative Adversarial Networks, GANs):由两个神经网络组成,用于生成新的、与真实数据相似的数据。

18.主题模型 (Topic Models):如隐狄利克雷分布 (Latent Dirichlet Allocation, LDA),用于文本数据的主题发现。

19.关联规则学习 (Association Rule Learning):如Apriori和Eclat算法,用于发现大数据集中的有趣关联。

20.序列模型 (Sequence Models):如隐马尔可夫模型 (Hidden Markov Models, HMMs),适用于时间序列数据分析。

具体上代码(十个):

1.支持向量回归 (SVR)
from sklearn.svm import SVR
import numpy as np
import matplotlib.pyplot as plt

#创建一些示例数据
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

#初始化SVR模型
svr = SVR(kernel=‘rbf’, C=1e3, gamma=0.1)

#训练模型
svr.fit(X, y)

#可视化
plt.scatter(X, y, color=‘darkorange’, label=‘data’)
plt.plot(X, svr.predict(X), color=‘navy’, lw=2, label=‘SVR model’)
plt.title(‘Support Vector Regression’)
plt.legend()
plt.show()

2.AdaBoost

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
import matplotlib.pyplot as plt

#创建一些示例数据
X, y = make_classification(n_samples=100, n_features=4)

#初始化AdaBoost模型
ada = AdaBoostClassifier(n_estimators=100)

#训练模型
ada.fit(X, y)

#可视化(仅使用前两个特征)
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘AdaBoost Classifier’)
plt.show()

3.XGBoost
import xgboost as xgb
import numpy as np
import matplotlib.pyplot as plt

#创建一些示例数据
X = np.linspace(0, 1, 100)
y = X + np.random.normal(scale=0.1, size=X.shape)

#转换数据为DMatrix格式
dtrain = xgb.DMatrix(X.reshape(-1, 1), label=y)

#设置参数
param = {‘max_depth’: 2, ‘eta’: 1, ‘objective’: ‘reg:squarederror’}

#训练模型
bst = xgb.train(param, dtrain, num_boost_round=2)

#预测
ypred = bst.predict(dtrain)

#可视化
plt.scatter(X, y)
plt.plot(X, ypred, color=‘red’)
plt.title(‘XGBoost Regression’)
plt.show()

4.神经网络 (Neural Networks)

使用简单的多层感知器模型,通常用于分类任务。

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_classification
import matplotlib.pyplot as plt

#创建一些示例数据
X, y = make_classification(n_samples=100, n_features=4)

#初始化神经网络模型
mlp = MLPClassifier(hidden_layer_sizes=(5,), max_iter=1000)

#训练模型
mlp.fit(X, y)

#可视化(仅使用前两个特征)
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.title(‘Neural Network (MLP Classifier)’)
plt.show()

5.长短期记忆网络 (Long Short-Term Memory, LSTM)

使用Keras构建简单的LSTM模型,适用于序列数据。

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np

#创建一些序列数据
data = np.array([[i for i in range(100)]])
data = data.reshape((1, 100, 1)) # 格式为(samples, timesteps, features)

#创建LSTM模型
model = Sequential()
model.add(LSTM(50, activation=‘relu’, input_shape=(100, 1)))
model.add(Dense(1))
model.compile(optimizer=‘adam’, loss=‘mse’)

#训练模型
model.fit(data, np.array([100]), epochs=300, verbose=0)

#预测
prediction = model.predict(data, verbose=0)
print(prediction)

6.随机梯度下降 (Stochastic Gradient Descent, SGD)

使用SGD进行简单的线性回归

from sklearn.linear_model import SGDRegressor
import numpy as np
import matplotlib.pyplot as plt

#创建一些示例数据
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

#初始化SGD回归模型
sgd_reg = SGDRegressor(max_iter=1000, tol=1e-3, penalty=None, eta0=0.1)

#训练模型
sgd_reg.fit(X, y.ravel())

#预测
X_new = np.array([[0], [2]])
y_predict = sgd_reg.predict(X_new)

#可视化
plt.plot(X_new, y_predict, “r-”)
plt.plot(X, y, “b.”)
plt.axis([0, 2, 0, 15])
plt.show()

7.卷积神经网络 (Convolutional Neural Networks, CNNs)

适用于图像分类任务的简单CNN模型。

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.utils import to_categorical

#加载数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#格式化数据
X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

#创建模型
model = Sequential()
model.add(Conv2D(64, kernel_size=3, activation=‘relu’, input_shape=(28, 28, 1)))
model.add(Conv2D(32, kernel_size=3, activation=‘relu’))
model.add(Flatten())
model.add(Dense(10, activation=‘softmax’))

#编译模型
model.compile(optimizer=‘adam’, loss=‘categorical_crossentropy’, metrics=[‘accuracy’])

#训练模型
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3)

8.关联规则学习 (Association Rule Learning)

使用Apriori算法进行关联规则学习。

!pip install mlxtend
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
import pandas as pd

#示例数据集
data = pd.DataFrame({
‘item’: [‘apple’, ‘beer’, ‘rice’, ‘chicken’, ‘apple’, ‘beer’, ‘rice’],
‘transaction_id’: [1, 1, 1, 2, 2, 2, 2]
})

#数据预处理
hot_encoded_df = data.groupby([‘transaction_id’, ‘item’])[‘item’].count().unstack().reset_index().fillna(0).set_index(‘transaction_id’)

#运用Apriori算法
frequent_itemsets = apriori(hot_encoded_df, min_support=0.5, use_colnames=True)

#关联规则
rules = association_rules(frequent_itemsets, metric=“lift”, min_threshold=1)
print(rules)

9.生成对抗网络 (Generative Adversarial Networks, GANs)

构建一个简单的GAN模型进行图像生成。
from keras.models import Sequential
from keras.layers import Dense, Reshape, Flatten, Conv2D, Conv2DTranspose, LeakyReLU
from keras.optimizers import Adam

#生成器模型
generator = Sequential()
generator.add(Dense(128 * 7 * 7, activation=“relu”, input_dim=100))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(128, kernel_size=4, strides=2, padding=“same”, activation=“relu”))
generator.add(Conv2DTranspose(128, kernel_size=4, strides=2, padding=“same”, activation=“relu”))
generator.add(Conv2D(1, kernel_size=7, activation=“sigmoid”, padding=“same”))

#判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=3, strides=2, padding=“same”, input_shape=(28, 28, 1), activation=LeakyReLU(alpha=0.2)))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation=“sigmoid”))

#编译判别器
discriminator.compile(loss=“binary_crossentropy”, optimizer=Adam())

#GAN模型
gan = Sequential([generator, discriminator])

#编译GAN
discriminator.trainable = False
gan.compile(loss=“binary_crossentropy”, optimizer=Adam())
#由于复杂性和所需的数据集,这些代码仅提供基本结构,可能需要适当调整才能运行。其他更复杂的算法,如RNNs, LSTMs, GRUs等,需要更多的代码和专门的数据预处理。如果您对特定算法感兴趣,请告知,我将尽力提供相关的代码示例。#

10.归神经网络 (Recurrent Neural Networks, RNNs)
from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np

#创建一些序列数据
timesteps = 100 # 时间步长
input_features = 32 # 输入特征空间的维度
output_features = 64 # 输出特征空间的维度

inputs = np.random.random((timesteps, input_features))

#创建RNN模型
model = Sequential()
model.add(SimpleRNN(output_features, return_sequences=True, input_shape=(None, input_features)))
model.add(Dense(1))

model.compile(optimizer=‘rmsprop’, loss=‘binary_crossentropy’)
model.summary()

#由于没有实际数据,这里不执行fit或predict
(待续)

  • 19
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值