Problem Description
在 dota2 中有一个叫做祈求者(Invoker)的英雄,在游戏中他有三个基础技能:冰(Quas),雷(Wex),火(Exort),每施展一个技能就可以获得相应属性的一个法球(element)。
但是祈求者同时最多只能有三个法球,即如果他在有三个法球的状态下又使用了某个法球技能,那么他会获得该法球,并失去之前三个法球中最先获得的一个。
不难得出,祈求者身上的三个法球的无顺序组合有 10 种,每一种都对应着一个组合技能:
- 急速冷却(Cold Snap),无序组合 QQQ,用 Y 表示
- 幽灵漫步(Ghost Walk),无序组合 QQW,用 V 表示
- 寒冰之墙(Ice Wall),无序组合 QQE,用 G 表示
- 电磁脉冲(EMP),无序组合 WWW,用 C 表示
- 强袭飓风(Tornado),无序组合 QWW,用 X 表示
- 灵动迅捷(Alacrity),无序组合 WWE,用 Z 表示
- 阳炎冲击(Sun Strike),无序组合 EEE,用 T 表示
- 熔炉精灵(Forge Spirit),无序组合 QEE,用 F 表示
- 混沌陨石(Chaos Meteor),无序组合 WEE,用 D 表示
- 超震声波(Deafening Blast),无序组合 QWE,用 B 表示
当祈求者拥有三个法球的时候,使用元素祈唤(Invoke)技能,用 R 表示,便可获得当前法球组合所对应的技能,同时原有的三个法球也不会消失,先后顺序的状态也不会改变。
现在给定一个技能序列,你想按照给定的顺序将他们一个一个地祈唤出来,同时你想用最少的按键来达到目标,所以你想知道对于给定的一个技能序列,最少按多少次键才能把他们都祈唤出来。
注意:游戏开始的时候,祈求者是没有任何法球的。
Input
仅一行一个字符串 s,表示技能序列。其中所有字母都是大写,且在 {B,C,D,F,G,T,V,X,Y,Z} 内。
1≤|s|≤105
Output
仅一行一个正整数,表示最少按键次数。
Sample Input
XDTBV
Sample Output
14
Hint
一种按键最少的方案为:QWWREERERWQRQR
思路:
是道DP题,状态转移方程也比较好推:
dp[i][k]=min(dp[i][k],dp[i-1][j]+solve(mm[s[i-1]],mm[s[i]],j,k));
其中i为原字符串的第i位,k为当前位置选择的排列方式,solve函数用来判断需要加几个字符。
solve函数里面写的是当前位和前一位相比较,判断有多少元素是相同的。
然后写一个循环,到最后一位的所有状态中的最小值,在加上R的个数就可以,R的个数是原字符串的长度。
AC代码:
#include<bits/stdc++.h>
using namespace std;
char a[10][6][4]=
{
{{"QQQ"},{"QQQ"},{"QQQ"},{"QQQ"},{"QQQ"},{"QQQ"}},
{{"QQW"},{"QQW"},{"WQQ"},{"WQQ"},{"QWQ"},{"QWQ"}},
{{"QQE"},{"QQE"},{"EQQ"},{"EQQ"},{"QEQ"},{"QEQ"}},
{{"WWW"},{"WWW"},{"WWW"},{"WWW"},{"WWW"},{"WWW"}},
{{"WWQ"},{"WWQ"},{"QWW"},{"QWW"},{"WQW"},{"WQW"}},
{{"WWE"},{"WWE"},{"EWW"},{"EWW"},{"WEW"},{"WEW"}},
{{"EEE"},{"EEE"},{"EEE"},{"EEE"},{"EEE"},{"EEE"}},
{{"EEW"},{"EEW"},{"WEE"},{"WEE"},{"EWE"},{"EWE"}},
{{"EEQ"},{"EEQ"},{"QEE"},{"QEE"},{"EQE"},{"EQE"}},
{{"QWE"},{"WQE"},{"EQW"},{"EWQ"},{"QEW"},{"WEQ"}}
};
map<char,int>mm;
int dp[100010][6];
char s[100010];
int solve(int s,int t,int f,int g)
{
if(a[s][f][0]==a[t][g][0]&&a[s][f][1]==a[t][g][1]&&a[s][f][2]==a[t][g][2])
return 0;
else if(a[s][f][2]==a[t][g][1]&&a[s][f][1]==a[t][g][0])
return 1;
else if(a[s][f][2]==a[t][g][0])
return 2;
return 3;
}
int main()
{
while(~scanf("%s",s))
{
mm['B']=9,mm['C']=3,mm['D']=7,mm['F']=8,mm['G']=2,mm['T']=6,mm['V']=1,mm['X']=4,mm['Y']=0,mm['Z']=5;
int ans=strlen(s);
memset(dp,0x3f,sizeof(dp));
for(int i=0;i<6;i++)
dp[0][i]=3;
for(int i=1; i<ans; i++)
for(int j=0; j<6; j++)
for(int k=0; k<6; k++)
{
dp[i][k]=min(dp[i][k],dp[i-1][j]+solve(mm[s[i-1]],mm[s[i]],j,k));
}
int res=0x3f3f3f3f;
for(int i=0;i<6;i++)
res=min(res,dp[ans-1][i]);
res+=ans;
printf("%d\n",res);
}
}